4.8 Article

A polarization-induced 2D hole gas in undoped gallium nitride quantum wells

Journal

SCIENCE
Volume 365, Issue 6460, Pages 1454-+

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.aau8623

Keywords

-

Funding

  1. Intel
  2. Air Force Office of Scientific Research (AFOSR) [AFOSR FA9550-17-1-0048]
  3. NSF [1710298, 1534303, ECCS-1542081]
  4. Cornell Center for Materials Research
  5. NSF Materials Research Science and Engineering Center (MRSEC) program [DMR-1719875]
  6. NSF MRSEC program [DMR-1719875]
  7. NSF Major Research Instrumentation programs [DMR-1429155, DMR-1338010]
  8. PARADIM as part of the NSF Materials Innovation Platform program [DMR-1539918]

Ask authors/readers for more resources

A high-conductivity two-dimensional (2D) hole gas, analogous to the ubiquitous 2D electron gas, is desirable in nitride semiconductors for wide-bandgap p-channel transistors. We report the observation of a polarization-induced high-density 2D hole gas in epitaxially grown gallium nitride on aluminium nitride and show that such hole gases can form without acceptor dopants.The measured high 2D hole gas densities of about 5 x 10(13) per square centimeters remain unchanged down to cryogenic temperatures and allow some of the lowest p-type sheet resistances among all wide-bandgap semiconductors. The observed results provide a probe for studying the valence band structure and transport properties of wide-bandgap nitride interfaces.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Physics, Applied

Electric field induced migration of native point defects in Ga2O3 devices

Micah S. S. Haseman, Daram N. N. Ramdin, Wenshen Li, Kazuki Nomoto, Debdeep Jena, Huili Grace Xing, Leonard J. J. Brillson

Summary: This study investigates the movement of electrically charged defects in Ga2O3 vertical trench power diodes using cathodoluminescence point spectra and hyperspectral imaging. The researchers observed the spatial rearrangement of optically active defects under strong reverse bias. These findings demonstrate the potential impact of extreme electric fields on atomic rearrangement and local doping changes in beta-Ga2O3, highlighting the importance of nanoscale device geometry in other high-power semiconductor devices.

JOURNAL OF APPLIED PHYSICS (2023)

Article Physics, Applied

Polarization-induced 2D electron gases in N-polar AlGaN/AlN heterostructures on single-crystal AlN substrates

Zexuan Zhang, Jashan Singhal, Shivali Agrawal, Eungkyun Kim, Vladimir Protasenko, Masato Toita, Huili Grace Xing, Debdeep Jena

Summary: Polarization-induced carriers are important for achieving high electrical conductivity in ultrawide bandgap semiconductor AlGaN. However, studies on these carriers in N-polar AlGaN are rare. This study observes and characterizes polarization-induced two-dimensional electron gases (2DEGs) in N-polar AlGaN/AlN heterostructures with varying Al content. The results provide valuable insights for designing high electron mobility transistors and UV photonic devices.

APPLIED PHYSICS LETTERS (2023)

Article Physics, Applied

AlN/AlGaN/AlN quantum well channel HEMTs

Jashan Singhal, Eungkyun Kim, Austin Hickman, Reet Chaudhuri, Yongjin Cho, Huili Grace Xing, Debdeep Jena

Summary: We conducted a study on the compositional dependence of electrical characteristics in AlxGa1-xN quantum well channel-based AlN/AlGaN/AlN high electron mobility transistors (HEMTs), with x values of 0.25, 0.44, and 0.58. The use of selectively regrown n-type GaN Ohmic contacts resulted in increased contact resistance with higher Al content in the channel. The DC HEMT device characteristics showed a progressive reduction in maximum drain current densities and a simultaneous decrease in threshold voltage with increasing x values.

APPLIED PHYSICS LETTERS (2023)

Article Physics, Applied

N-polar GaN/AlGaN/AlN high electron mobility transistors on single-crystal bulk AlN substrates

Eungkyun Kim, Zexuan Zhang, Jimy Encomendero, Jashan Singhal, Kazuki Nomoto, Austin Hickman, Cheng Wang, Patrick Fay, Masato Toita, Debdeep Jena, Huili Grace Xing

Summary: Recent observations of high density polarization-induced electron gases in ultra-thin N-polar GaN layers on single-crystal AlN have allowed for the development of N-polar high electron mobility transistors (HEMTs) on AlN. These devices can take advantage of AlN's thermal and power handling capabilities, while also benefitting from N-polar structures like a strong back barrier. Experimental demonstrations of N-polar GaN/AlGaN/AlN HEMTs on single-crystal AlN substrates have shown promising performance, paving the way for RF electronics with excellent thermal management based on N-polar single-crystal AlN.

APPLIED PHYSICS LETTERS (2023)

Article Engineering, Electrical & Electronic

15-GHz Epitaxial AlN FBARs on SiC Substrates

Wenwen Zhao, Mohammad Javad Asadi, Lei Li, Reet Chaudhuri, Kazuki Nomoto, Huili Grace Xing, James C. M. Hwang, Debdeep Jena

Summary: This study demonstrates epitaxial AlN thin-film bulk acoustic resonators (FBARs) on SiC substrates with first-order thickness extensional modes of 15-17 GHz. The achieved quality factor Q(max) of approximately 443, electromechanical coupling coefficient k(eff)(2) of approximately 2.3%, and f center dot Q of approximately 6.65 THz figure of merit are among the highest in the Ku-band (12-18 GHz). The clean primary mode with a high quality factor allows these epitaxial AlN FBARs to be used in Ku-band acoustic filters with clean bands and steep rejection. Additionally, their compatibility with AlN/GaN/AlN quantum well high-electron-mobility transistors (QW HEMTs) allows for monolithic integration with HEMT low noise amplifiers (LNAs) and power amplifiers (PAs).

IEEE ELECTRON DEVICE LETTERS (2023)

Article Materials Science, Coatings & Films

Molecular beam epitaxy of KTaO3

Tobias Schwaigert, Salva Salmani-Rezaie, Matthew R. Barone, Hanjong Paik, Ethan Ray, Michael D. Williams, David A. Muller, Darrell G. Schlom, Kaveh Ahadi

Summary: Strain-engineering is used to tune the instabilities of incipient ferroelectrics. High-quality KTaO3 thin films are grown by molecular-beam epitaxy. Excess potassium and a combination of ozone and oxygen are supplied with the TaO2 (or tantalum) molecular beams to grow the films with atomically abrupt interfaces. Atomic force microscopy reveals atomic steps at the film surface. Reciprocal space mapping demonstrates coherent strain to the substrates when the films are thin enough.

JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A (2023)

Article Materials Science, Coatings & Films

Why thermal laser epitaxy aluminum sources yield reproducible fluxes in oxidizing environments

Thomas J. Smart, Felix V. E. Hensling, Dong Yeong Kim, Lena N. Majer, Y. Eren Suyolcu, Dominik Dereh, Darrell G. Schlom, Debdeep Jena, Jochen Mannhart, Wolfgang Braun

Summary: This work investigates the behavior of aluminum sources in oxide thermal laser epitaxy and identifies two distinct operating regimes. At high laser-beam fluences, the source emits reproducible fluxes independent of oxygen pressure. At lower beam fluences, the flux increases with increasing oxygen pressure due to suboxide formation. The study demonstrates reproducible rate control over a wide range and highlights the advantages of thermal laser epitaxy over oxide molecular-beam epitaxy in handling aluminum sources.

JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A (2023)

Review Physics, Multidisciplinary

Topological phases in polar oxide nanostructures

Javier Junquera, Yousra Nahas, Sergei Prokhorenko, Laurent Bellaiche, Jorge iniguez, Darrell G. Schlom, Long-Qing Chen, Sayeef Salahuddin, David A. Muller, Lane W. Martin, R. Ramesh

Summary: The past decade has witnessed significant progress in understanding emergent topological polar textures in oxide nanostructures, including vortices, skyrmions, merons, hopfions, dipolar waves, and labyrinthine domains. The discovery of low-dimensional ferroelectric oxide nanostructures has altered the perceived energy cost associated with the formation of these structures, allowing for manipulation of order parameters. This review provides a historical context, scientific description, and discussion of the potential applications and future challenges in this field.

REVIEWS OF MODERN PHYSICS (2023)

Article Chemistry, Multidisciplinary

Operando Electrochemical Liquid-Cell Scanning Transmission Electron Microscopy (EC-STEM) Studies of Evolving Cu Nanocatalysts for CO2 Electroreduction

Yao Yang, Yu-Tsun Shao, Jianbo Jin, Julian Feijoo, Inwhan Roh, Sheena Louisia, Sunmoon Yu, Maria V. Fonseca Guzman, Chubai Chen, David A. Muller, Hector D. Abruna, Peidong Yang

Summary: The design and synthesis of nanocatalysts with well-defined sizes, compositions, and structures have greatly enhanced our ability to control catalyst activity and selectivity for energy-related electrochemical reactions. By using operando electrochemical liquid-cell scanning transmission electron microscopy (EC-STEM), the dynamic evolution of Cu nanocatalysts during CO2 electroreduction was observed, providing valuable insights into their active states. With further technical advancements, operando EC-STEM is expected to become a powerful electroanalytical method for studying nanoscale electrocatalysts at solid/liquid interfaces.

ACS SUSTAINABLE CHEMISTRY & ENGINEERING (2023)

Article Materials Science, Multidisciplinary

Mapping Polar Distortions using Nanobeam Electron Diffraction and a Cepstral Approach

Megan E. Holtz, Elliot Padgett, Aaron C. Johnston-Peck, Igor Levin, David A. Muller, Andrew A. Herzing

Summary: Measuring local polar ordering is crucial for understanding ferroelectricity in thin films. The cepstral approach allows us to determine the local polar displacements that drive ferroelectricity from nanobeam electron diffraction patterns. Experimental results demonstrate that this technique achieves a precision of 1.1 pm in mapping polar displacements with nanometer resolution.

MICROSCOPY AND MICROANALYSIS (2023)

Article Materials Science, Multidisciplinary

Thermal conductivity enhancement of aluminum scandium nitride grown by molecular beam epitaxy

Gustavo A. Alvarez, Joseph Casamento, Len van Deurzen, Md Irfan Khan, Kamruzzaman Khan, Eugene Jeong, Elaheh Ahmadi, Huili Grace Xing, Debdeep Jena, Zhiting Tian

Summary: Aluminum scandium nitride (AlScN) is gaining attention for its larger piezoelectric response compared to AlN, but alloying Sc with AlN reduces thermal conductivity. Self-heating limits power handling in AlScN devices, and we compared thermal conductivity of AlScN grown on different substrates.

MATERIALS RESEARCH LETTERS (2023)

No Data Available