4.6 Article

Integrated phase-change photonic devices and systems

Journal

MRS BULLETIN
Volume 44, Issue 9, Pages 721-727

Publisher

SPRINGER HEIDELBERG
DOI: 10.1557/mrs.2019.203

Keywords

memory; phase transformation; nucleation and growth

Funding

  1. EU H2020 Program (Fun-COMP Project) [780848]
  2. EPSRC [EP/J018694/1, EP/M015173/1, EP/M015130/1, EP/R001677/1] Funding Source: UKRI

Ask authors/readers for more resources

Driven by the rapid rise of silicon photonics, optical signaling is moving from the realm of long-distance communications to chip-to-chip, and even on-chip domains. If on-chip signaling becomes optical, we should consider what more we might do with light than just communicate. We might, for example, set goals for the storing and processing of information directly in the optical domain. Doing this might enable us to supplement, or even surpass, the performance of electronic processors, by exploiting the ultrahigh bandwidth and wavelength division multiplexing capabilities offered by optics. In this article, we show how, by using an integrated photonics platform that embeds chalcogenide phase-change materials into standard silicon photonics circuits, we can achieve some of these goals. Specifically, we show that a phase-change integrated photonics platform can deliver binary and multilevel memory, arithmetic and logic processing, as well as synaptic and neuronal mimics for use in neuromorphic, or brain-like, computing-all working directly in the optical domain.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available