4.8 Article

Probing the Surface Structure of Semiconductor Nanoparticles by DNP SENS with Dielectric Support Materials

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 141, Issue 39, Pages 15532-15546

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jacs.9b05509

Keywords

-

Funding

  1. U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Science and Engineering Division
  2. U.S. DOE [DE-ACO2-07CH11358, DE-AC36-08GO28308]
  3. U.S. National Science Foundation [CHE-1552164]
  4. David and Lucile Packard Foundation
  5. U.S. DOE, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, Solar Photochemistry Program
  6. U.S. National Science Foundation from the Division of Chemistry, Macromolecular, Supra molecular and Nanochemistry program [1905066]
  7. U.S. Department of Energy [DE-ACO2-07CH11358]
  8. National Science Foundation [NNCI-1542101]
  9. Division Of Chemistry
  10. Direct For Mathematical & Physical Scien [1905066] Funding Source: National Science Foundation

Ask authors/readers for more resources

Surface characterization is crucial for understanding how the atomic-level structure affects the chemical and photophysical properties of semiconducting nanoparticles (NPs). Solid-state nuclear magnetic resonance spectroscopy (NMR) is potentially a powerful technique for the characterization of the surface of NPs, but it is hindered by poor sensitivity. Dynamic nuclear polarization surface enhanced NMR spectroscopy (DNP SENS) has previously been demonstrated to enhance the sensitivity of surface-selective solid-state NMR experiments by 1-2 orders of magnitude. Established sample preparations for DNP SENS experiments on NPs require the dilution of the NPs on mesoporous silica. Using hexagonal boron nitride (h-BN) to disperse the NPs doubles DNP enhancements and absolute sensitivity in comparison to standard protocols with mesoporous silica. Alternatively, precipitating the NPs as powders, mixing them with h-BN, and then impregnating the powdered mixture with radical solution leads to further 4-fold sensitivity enhancements by increasing the concentration of NPs in the final sample. This modified procedure provides a factor of 9 improvement in NMR sensitivity in comparison to previously established DNP SENS procedures, enabling challenging homonuclear and heteronuclear 2D NMR experiments on CdS, Si, and Cd3P2 NPs. These experiments allow NMR signals from the surface, subsurface, and core sites to be observed and assigned. For example, we demonstrate the acquisition of DNP-enhanced 2D Cd-113-Cd-113 correlation NMR experiments on CdS NPs and natural isotropic abundance 2D C-13-Si-29 HETCOR of functionalized Si NPs. These experiments provide a critical understanding of NP surface structures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available