4.7 Article

Synchronous optimization of strengths, ductility and corrosion resistances of bulk nanocrystalline 304 stainless steel

Journal

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
Volume 37, Issue -, Pages 161-172

Publisher

JOURNAL MATER SCI TECHNOL
DOI: 10.1016/j.jmst.2019.05.073

Keywords

Stainless steel; Pitting corrosion; Stress corrosion; Tensile properties; Low-cycle fatigue; Severe rolling technology

Funding

  1. National Natural Sciences of Foundation of China [51171199]
  2. Pujiang, Chengdu, Sichuan Province, China [Y5N4811181]

Ask authors/readers for more resources

Structural materials usually suffer from several attacks during their service, such as tension, fatigue and corrosion. It is necessary to synchronously improve these properties for their lightweight and long-lifetime, but corrosion resistance and ductility are generally inverse correlation with strength, it is very difficult to simultaneously optimize all three properties. However, bulk nanocrystalline 304 stainless steel (BN-304SS) produced by severe rolling technology possessed the larger yield and ultimate tensile strengths with sufficient elongation (> 40%) during tensile test, the larger saturation stress and longer lifetime during low-cycle fatigue, the enhanced uniform and pitting corrosion resistances during fiveday immersion test in 6 mol/L HCl, the lowered stress corrosion cracking (SCC) susceptibility with larger yield (similar to 2.40 GPa) and ultimate tensile (similar to 2.66 GPa) strengths, and enough elongation (> 30%) during stress corrosion in comparison with conventional polycrystalline 304 stainless steel (CP-304SS) counterpart. The uniform and pitting corrosion resistances of fractured BN-304SS were enhanced in comprsion with those of fractured CP-304SS during seven-day immersion test in 1 mol/L HCl. These results demonstrated the strengths, ductility and corrosion resistances of BN-304SS can be simultaneously optimized by severe rolling technology. These improved results of BN-304SS in different disciplines were understood by its valence electron configurations rather than traditional microstructural parameters. (C) 2019 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available