4.1 Article

Advantages and pitfalls of noninvasive electrocardiographic imaging

Journal

JOURNAL OF ELECTROCARDIOLOGY
Volume 57, Issue -, Pages S15-S20

Publisher

CHURCHILL LIVINGSTONE INC MEDICAL PUBLISHERS
DOI: 10.1016/j.jelectrocard.2019.08.007

Keywords

Non-invasive electrocardiography; Torso tank; Activation; Repolarization

Funding

  1. French National Research Agency [ANR-10-IAHU04-LIRYC]
  2. Fondation Leducq transatlantic network of excellence RHYTHM transatlantic network [16CVD02]
  3. National Institute of General Medical Sciences of the National Institutes of Health [P41 GM103545-18]

Ask authors/readers for more resources

Background: With increasing clinical use of Electrocardiographic Imaging (ECGI), it is imperative to understand the limits of this technique. The objective of this study is to evaluate a potential-based ECGI approach for activation and repolarization mapping in sinus rhythm. Method: Langendorff-perfused pig hearts were suspended in a human-shaped torso tank. Electrograms were recorded with a 108-electrode sock and ECGs with 256 electrodes embedded in the tank surface. Left bundle branch block (LBBB) was developed in 4 hearts through ablation, and repolarization abnormalities in another 4 hearts through regional perfusion of dofetilide and pinacidil. Electrograms were noninvasively reconstructed and reconstructed activation and repolarization features were compared to those recorded. Results: Visual consistency between ECGI and recorded activation and repolarization maps was high. While reconstructed repolarization times showed significantly more error than activation times quantitatively, patterns were reconstructed with a similar level of accuracy. The number of epicardial breakthrough sites was underestimated by ECGI and these were misplaced (>20 mm) in location. Likewise, ECGI reconstructed activation maps demonstrated artificial lines of block resulting from a W-shaped QRS waveform that were not present in recorded maps. Nevertheless, ECGI allowed identification of regions of abnormal repolarization reasonably accurately in terms of size, location and timing. Conclusions: This study validates a potential-based ECGI approach to noninvasively image activation and recovery in sinus rhythm. Despite inaccuracies in epicardial breakthroughs and lines of conduction block, other important clinical features such as regions of abnormal repolarization can be accurately derived making ECGI a valuable clinical tool. (C) 2019 The Authors. Published by Elsevier Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available