4.5 Article

Influence of tempering treatments on mechanical properties and hydrogen embrittlement of 13 wt% Cr martensitic stainless steel

Journal

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ijpvp.2019.103969

Keywords

Martensitic stainless steel; Tempering; Hydrogen embrittlement; Slow strain rate tensile testing

Ask authors/readers for more resources

The influence of tempering treatments on mechanical properties and hydrogen embrittlement (HE) of 13 wt% Cr martensitic stainless steel (MSS) have been investigated by Charpy impact tests and slow strain rate tensile (SSRT) tests followed by fracture surface examination. The austenitized and quenched specimens were tempered at 300, 550 and 700 degrees C for 2.5 h. The MSS tempered at 550 degrees C showed brittle intergranular (IG) fracture after impact tests indicating its susceptibility to temper embrittlement. The experimental results showed that the 13 wt% Cr MSS is sensitive to HE. The as-quenched condition showed cracking during hydrogen pre-charging itself. Hydrogen pre-charging duration increased the susceptibility to HE of tempered MSS. The maximum HE susceptibility was observed for specimen tempered at 550 degrees C with a drastic reduction in strength and strain to failure. Tempering at 300 and 550 degrees C showed brittle IG fracture with hydrogen pre-charging in SSRT tests whereas increased IG region with ductile dimples was observed for specimen tempered at 700 degrees C with increase of pre-charging duration. The reason for maximum susceptibility to HE of specimen tempered at 550 degrees C is due to synergistic interaction of hydrogen and impurities segregated at prior austenitic grain boundaries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Engineering, Multidisciplinary

Probabilistic finite element-based reliability of corroded pipelines with interacting corrosion cluster defects

Abraham Mensah, Srinivas Sriramula

Summary: This paper proposes a pathway for developing efficient performance functions to evaluate the probability of failure for interacting pipeline corrosion clustering defects using a probabilistic finite element-based reliability method. The framework reduces computational cost and offers informed decision-making on risk and maintenance management.

INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING (2024)

Article Engineering, Multidisciplinary

A semi-analytical model to predict residual stress distribution in thick wall girth weld with narrow gap welding

Baozhu Zhang, Wenchun Jiang, Yun Luo, Wei Peng, Yingjie Qiao

Summary: This paper studies the distribution of residual stress in thick wall girth welds using narrow-gap welding. The study finds that the heat input, wall thickness, radius thickness ratio, and number of welding passes have an effect on residual stress. A model for the distribution of welding residual stress through the wall thickness is proposed, and its results are in good agreement with finite element calculation results.

INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING (2024)

Article Engineering, Multidisciplinary

Experimental research of stress state and residual stresses of the hydropower pipeline branch model

Stefan Culafic, Darko Bajic, Tasko Maneski

Summary: This paper presents experimental research on a branch model conducted in laboratory conditions. The study verifies the linear relationship between stress and internal pressure in the field of elasticity and reveals the occurrences when stresses exceed the yield strength of the branch material, such as plastic deformations of the branch model. The research also defines the dependence of stress on internal pressure in both the field of elasticity and the zone of residual stresses.

INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING (2024)

Article Engineering, Multidisciplinary

Residual stress and microstructure control in welding of SA508 low alloy steel

Wenchun Jiang, Wenlu Xie, Xinyue Qi, Yangguang Deng, Yu Wan, Xuefang Xie

Summary: Various types of solid-state phase transformations (SSPT) occur during the SA508 steel welding process, leading to complex microstructure distribution and significant influence on residual stress distribution. To better control microstructure and residual stress, optimization of process parameters related to welding thermal cycles is necessary.

INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING (2024)