4.1 Article

Experimental probes of silver metal nanoparticle formation kinetics: Comparing indirect versus more direct methods

Journal

INTERNATIONAL JOURNAL OF CHEMICAL KINETICS
Volume 51, Issue 11, Pages 861-871

Publisher

WILEY
DOI: 10.1002/kin.21315

Keywords

nucleation and growth; sigmoidal kinetic curves; silver nanoparticles; surface plasmon resonance

Ask authors/readers for more resources

The kinetics of noble metal nanoparticle formation in bottom-up syntheses are important for controlling and optimizing these methods. Hence, experimental probes that are easily accessible to most laboratories are also of interest. We collected kinetic curves for the formation of silver nanoparticles in a modified Turkevich method with citrate acting as the reducing and stabilizing agent by (i) measuring the change in silver nanoparticle surface plasmon resonance by UV-visible spectroscopy, a somewhat indirect method, and then also by (ii) measuring the change in silver ion concentration by ion-selective electrode potentiometry and/or atomic absorption spectroscopy, two more direct methods. The resulting sigmoidal kinetic curves were curvefitted with the Finke-Watzky two-step kinetic model of slow, continuous nucleation and fast autocatalytic growth to extract average rate constants. We found that the kinetic curves obtained by following the change in silver ion concentration were apparent mirror images of those constructed by following the change in nanoparticle surface plasmon resonance, and that their respective curvefits displayed the same sigmoidal characteristics. The resultant values of the rate constants for nucleation and growth overlapped within experimental error between the methods and showed similar trends over the range of citrate concentrations studied. The use of multiple probes in this work to follow the kinetics of nanoparticle formation helps fill a need for the comparison and evaluation of different methods available to scientists, particularly those considered easily accessible.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available