4.7 Article

Effect of ionic liquid [MIm]HSO4 on WPCB metal-enriched scraps refined by slurry electrolysis

Journal

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
Volume 26, Issue 32, Pages 33260-33268

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-019-06337-x

Keywords

WPCBs; Ionic liquid; Slurry electrolysis; Metals and nonmetals; Refining

Funding

  1. National Natural Science Foundation of China [21377104]
  2. Research Fund of Southwest University of Science and Technology [14tdgk01, 17LZX422, 17LZXT05, 18LZX414]

Ask authors/readers for more resources

Waste printed circuit boards (WPCBs) are usually dismantled, crushed, and sorted to WPCB metal-enriched scraps, still containing an amount of non-metallic materials. This research used slurry electrolysis to refine these WPCB metal-enriched scraps and to examine if a standard ionic liquid, [MIm]HSO4, can replace H2SO4 in the system. The impact of the refinement process on metal migration and transformation is discussed in detail. The results demonstrated that metals in WPCB metal-enriched scraps could be successfully refined using slurry electrolysis, and [MIm]HSO4 can be used to replace H2SO4 in the system. When 80% of H2SO4 was replaced by [MIm]HSO4 (electrolyte of 200 mL, 30 g/L CuSO4 center dot 5H(2)O, 60 g/L NaCl, 130 g/L H2SO4, and 1.624 A for 4 h), the total metal recovery rate is 85%, and the purity, current efficiency, and particle size of cathode metal powder were 89%, 52%, and 3.77 mu m, respectively. Moreover, the microstructure of the cathode metal powder was dendritic in the H2SO4-CuSO4-NaCl slurry electrolysis system, whereas at an 80% [MIm]HSO4 substitution rate slurry electrolysis system, the cathode metal powder was irregular and accumulated as small-sized spherical particles. Thus, replacing inorganic leaching solvents with ionic liquids may provide a potential choice for the resources in WPCB metal-enriched scraps.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available