4.8 Article

Enhanced Photodegradation of Extracellular Antibiotic Resistance Genes by Dissolved Organic Matter Photosensitization

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 53, Issue 18, Pages 10732-10740

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.9b03096

Keywords

-

Funding

  1. National Natural Science Foundation of China [51738012, 51825804, 51821006]

Ask authors/readers for more resources

Extracellular antibiotic resistance genes (eARGs) contribute to antibiotic resistance, and as such, they pose a serious threat to human health. eARGs, regarded as an emerging contaminant, have been widely detected in various bodies of water. Degradation greatly weakens their distribution potential and environmental risks. Dissolved organic matter (DOM), mainly consisted of humic substances, carbohydrates, and organic acids, is ubiquitous in diverse waters and significantly affects the degradation of coexisting contaminants. However, the photodegradation of eARGs in fie natural water, especially regarding the roles of DOM in this process, remains unknown. Herein, we investigated the eARGs photodegradation in waters with and without DOM. Illumination has been found to effectively photodegrade eARGs, and this process was significantly enhanced by DOM. Further experiments revealed that photosensitization of DOM produced hydroxyl radicals ((OH)-O-center dot) to enhance plasmid strand breaks and produced singlet oxygen (O-1(2)) to accelerate the guanine oxidation, which in turn promoted the photodegradation of plasmid-carried eARGs. Transformation assays indicated that eARGs transformation efficiencies were reduced after their photodegradation. The presence of DOM accelerated the decreases of eARGs transformation efficiencies under illumination. DOM concentration and some ions (e.g., NO3-, NO2-, HCO3-, Br-, and Fe3+) affected (OH)-O-center dot or O-1(2) levels, further influencing the photodegradation of eARGs. Overall, eARGs photodegradation in aquatic environments is a crucial process both in the reduction of eARGs concentrations and in transformation efficiencies. This work facilitated us to better understand the fate of eARGs in waters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available