4.5 Article

Optimal Dispatch of Integrated Energy System Considering Energy Hub Technology and Multi-Agent Interest Balance

Journal

ENERGIES
Volume 12, Issue 16, Pages -

Publisher

MDPI
DOI: 10.3390/en12163112

Keywords

integrated energy; energy hub technology; multi-agent; renewable energy; NSGA-III

Categories

Funding

  1. National Natural Science Foundation of China [5197070128]
  2. Technical Projects of china Southern Power Grid [GDKJQQ20161202]

Ask authors/readers for more resources

With the gradual liberalization of the energy market, the future integrated energy system will be composed of multiple agents. Therefore, this paper proposes an optimization dispatch method considering energy hub technology and multi-agent interest balance in an integrated energy system. Firstly, an integrated energy system, including equipment for cogeneration, renewable energy, and electric vehicles, is established. Secondly, energy hub technologies, such as demand response, electricity storage, and thermal storage, are comprehensively considered, and the integrated energy system is divided into three agents: Integrated energy service providers, renewable energy owners, and users, respectively. Then, with the goal of balancing the interests of each agent, the model is solved by the non-dominated sorting genetic algorithm-III (NSGA-III) to obtain the Pareto frontier. Since the Pareto frontier is a series of values, the optimal solution of each agent in the Pareto frontier is found by the technical for order preference with a similar to ideal solution (TOPSIS). Ultimately, taking an integrated energy demonstration park in China as a case study, the function of energy hub technology is analyzed by simulation, and the proposed method is verified to be effective and practicable.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available