4.5 Article

Estimation of Oil Recovery Factor for Water Drive Sandy Reservoirs through Applications of Artificial Intelligence

Journal

ENERGIES
Volume 12, Issue 19, Pages -

Publisher

MDPI
DOI: 10.3390/en12193671

Keywords

hydrocarbon reserve estimation; oil recovery factor; water drive sandy reservoirs; artificial intelligence

Categories

Ask authors/readers for more resources

Hydrocarbon reserve evaluation is the major concern for all oil and gas operating companies. Nowadays, the estimation of oil recovery factor (RF) could be achieved through several techniques. The accuracy of these techniques depends on data availability, which is strongly dependent on the reservoir age. In this study, 10 parameters accessible in the early reservoir life are considered for RF estimation using four artificial intelligence (AI) techniques. These parameters are the net pay (effective reservoir thickness), stock-tank oil initially in place, original reservoir pressure, asset area (reservoir area), porosity, Lorenz coefficient, effective permeability, API gravity, oil viscosity, and initial water saturation. The AI techniques used are the artificial neural networks (ANNs), radial basis neuron networks, adaptive neuro-fuzzy inference system with subtractive clustering, and support vector machines. AI models were trained using data collected from 130 water drive sandstone reservoirs; then, an empirical correlation for RF estimation was developed based on the trained ANN model's weights and biases. Data collected from another 38 reservoirs were used to test the predictability of the suggested AI models and the ANNs-based correlation; then, performance of the ANNs-based correlation was compared with three of the currently available empirical equations for RF estimation. The developed ANNs-based equation outperformed the available equations in terms of all the measures of error evaluation considered in this study, and also has the highest coefficient of determination of 0.94 compared to only 0.55 obtained from Gulstad correlation, which is one of the most accurate correlations currently available.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available