4.7 Article

Application of rumen and anaerobic sludge microbes for bio harvesting from lignocellulosic biomass

Journal

CHEMOSPHERE
Volume 228, Issue -, Pages 702-708

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2019.04.159

Keywords

Lignocellulosic biomass; Rumen fluid; Anaerobic sludge; Volatile fatty acids; Biogas; Bio harvesting

Funding

  1. Faculty of Engineering and Information Technology, University of Technology Sydney

Ask authors/readers for more resources

This study investigated the production of biogas, volatile fatty acids (VFAs), and other soluble organic from lignocellulosic biomass by two microbial communities (i.e. rumen fluid and anaerobic sludge). Four types of abundant lignocellulosic biomass (i.e. wheat straw, oaten hay, lurence hay and corn silage) found in Australia were used. The results show that rumen microbes produced four-time higher VFAs level than that of anaerobic sludge reactors, indicating the possible application of rumen microorganism for VFAs generation from lignocellulosic biomass. VFA production in the rumen fluid reactors was probably due to the presence of specific hydrolytic and acidogenic bacteria (e.g. Fibrobacter and Prevotella). VFA production corroborated from the observation of pH drop in the rumen fluid reactors indicated hydrolytic and acidogenic inhibition, suggesting the continuous extraction of VFAs from the reactor. Anaerobic sludge reactors on the other hand, produced more biogas than that of rumen fluid reactors. This observation was consistent with the abundance of methanogens in anaerobic sludge inoculum (3.98% of total microbes) compared to rumen fluid (0.11%). VFA production from lignocellulosic biomass is the building block chemical for bioplastic, biohydrogen and biofuel. The results from this study provide important foundation for the development of engineered systems to generate VFAs from lignocellulosic biomass. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available