4.8 Article

Defect Heterogeneity in Monolayer WS2 Unveiled by Work Function Variance

Journal

CHEMISTRY OF MATERIALS
Volume 31, Issue 19, Pages 7970-7978

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemmater.9b02157

Keywords

-

Funding

  1. Ministry of Education, Singapore [WBS: R-284-000-175-112, WBS: R-144-000-357-112]
  2. National University of Singapore

Ask authors/readers for more resources

Defects are commonly found in two-dimensional (2D) transition-metal dichalcogenide (TMD) materials. Such defects usually dictate the optical and electrical properties of TMDs. It is thus important to develop techniques to characterize the defects directly with good spatial resolution, specificity, and throughput. Herein, we demonstrate that Kelvin probe force microscopy (KPFM) is a versatile technique for this task. It is able to unveil defect heterogeneity of 2D materials with a spatial resolution of 10 nm and energy sensitivity better than 10 meV. KPFM mappings of monolayer WS2 exhibit interesting work function variances that are associated with defects distribution. This finding is verified by aberration-corrected scanning transmission electron microscopy and density functional theory calculations. In particular, a strong correlation among the work function, electrical and optical responses to the defects is revealed. Our findings demonstrate the potential of KPFM as an effective tool for exploring the intrinsic defects in TMDs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available