4.7 Article

Response surface based experimental analysis and thermal resistance model of a thermoelectric power generation system

Journal

APPLIED THERMAL ENGINEERING
Volume 159, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2019.113935

Keywords

Thermosyphon; Thermoelectric power; Response surface method; Experiments; Thermal resistance model

Funding

  1. Design and Development of a Solar Pond and Biomass Driven Thermoelectric Unit for Domestic Power Generation using Inverse Method from Science & Engineering Research Board, Govt. of India [EEQ/2016/000073]

Ask authors/readers for more resources

In this work, a response surface analysis is carried out on an experimental setup of a combined two-phase flow thermosyphon and thermoelectric generator (TEG) system. Three-level Box-Behnken response surface method is adopted for the design of experiments, and analysis of variance is carried out to gauge the contribution of operating parameters on various performance parameters. Effects of operating parameters such as working pressure, filling ratio, evaporator length, and evaporator temperature are studied. The performance of the system itself is gauged concerning the maximum power obtained, open circuit voltage and short circuit current. With an increase in vacuum pressure and evaporator temperature, performance parameters are found to increase. However, performance parameters under the influence of filling ratio and evaporator length first decrease and then increase due to uneven variation in evaporation rate of working fluid. Experiments also reveal that the performance of the thermosyphon-assisted TEG system is mainly governed by pressure and evaporator temperature, whereas filling ratio and evaporator length have relatively lesser influence.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available