4.8 Article

Electrostatic Assembly of a Titanium Dioxide@Hydrophilic Poly(phenylene sulfide) Porous Membrane with Enhanced Wetting Selectivity for Separation of Strongly Corrosive Oil-Water Emulsions

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 11, Issue 38, Pages 35479-35487

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.9b12252

Keywords

PPS; membrane; oil-water separation; superhydrophilicity; oil-in-water emulsion; TiO2

Funding

  1. National Natural Science Foundation of China [B060306, 51573135]
  2. National Key Research and Development Program of China [2016YFC400509]
  3. Tianjin Science and Technology Military and Civilian Integration key special project [18ZXJMTG00110]

Ask authors/readers for more resources

The efficient treatment of oil-water emulsions in extreme environments, such as strongly acidic and alkaline media, remains a widespread concern. Poly(phenylene sulfide) (PPS)-based porous membranes with excellent resistance to chemicals and solvents are promising for settling this challenge. However, the limited hydrophilicity and the poor hydrated ability of the hydrophilic PPS (h-PPS) membranes reported in the literature prevents them from separating oil-water emulsions with high efficiency, large fluxes, and good antifouling performances. In this study, a firm rough TiO2 layer is constructed on a h-PPS membrane via electrostatic assembly to improve the surface hydrophilization. The introduction of the TiO2 layer increases the wetting selectivity and decreases the oil adhesion, which makes it capable to efficiently treat oil-in-water emulsions (efficiency > 98%). Most importantly, the underwater critical oil intrusion pressure almost doubled after the incorporation of the TiO2 layer, which allows the membrane to withstand pressurized filtration, achieving a high flux of similar to 4000 L m(-2) h(-1). This is more than 2 orders of magnitude larger than the flux of the reported h-PPS. Furthermore, the TiO2@h-PPS membrane displays long-term stability in separating oil-water emulsions in strong acid and strong alkali, showing a promising prospect for the treatment of strongly corrosive emulsions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available