4.6 Review

Climate Change Penalty to Ozone Air Quality: Review of Current Understandings and Knowledge Gaps

Journal

CURRENT POLLUTION REPORTS
Volume 5, Issue 3, Pages 159-171

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s40726-019-00115-6

Keywords

Ozone; Air quality; Climate change; Climate policy

Funding

  1. MOST National Key R&D Program of China [2017YFC0209802]
  2. National Natural Sciences Foundation of China [41461164007]

Ask authors/readers for more resources

Purpose of Review Climate warming may bear a penalty on future ozone air quality, even in the absence of changes in anthropogenic activities. This penalty has important implications for policy-making, but its quantification involves complex meteorological, chemical, and biological processes and feedbacks that are not well understood. We examined how climate-sensitive processes may affect surface ozone, identified key knowledge gaps uncovered by recent studies, and summarized latest assessments of the climate change penalty on ozone air quality. Recent Findings Recent analyses have challenged earlier paradigms on how climate change may affect surface ozone. The widely accepted associations of high ozone events with stagnation and heat waves require re-examination. Emission responses of natural precursors to climate warming may be significantly modulated by CO2 levels and ecosystem feedbacks, such that the direction of emission changes cannot be robustly determined at this time. Climate variability may drive fluctuations in surface ozone, which has implications for near-term air quality management. Recent studies have generally projected a climate change penalty on ozone air quality, although the magnitudes are smaller than those projected by earlier studies. Summary This review examined the latest understanding on the climate change penalty to surface ozone. Critical uncertainties are associated with the meteorological, chemical, and biological processes linking climate warming and ozone, and many of the known feedbacks are not yet included in models. Further research is needed to examine those processes in order to better quantify the climate change penalty on surface ozone to inform policy-making.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available