4.7 Article

Design and experimental validation of self-supporting topologies for additive manufacturing

Journal

VIRTUAL AND PHYSICAL PROTOTYPING
Volume 14, Issue 4, Pages 382-394

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/17452759.2019.1637023

Keywords

Topology optimisation; elemental volume fractions; level-set function; smooth boundary representation; additive manufacturing; self-supporting design

Ask authors/readers for more resources

Incorporating additive manufacturing (AM) constraints in topology optimisation can lead to performance optimality while ensuring manufacturability of designs. Numerical techniques have been previously proposed to obtain support-free designs in AM, however, few works have verified the manufacturability of their solutions. Physical verification of manufacturability becomes more critical recalling that the conventional density-based topology optimisation methods will inevitably require post-processing to smooth the boundaries before sending the results to a 3D printer. This paper presents the smooth design of self-supporting topologies using the combination of a new Solid Isotropic Microstructure with Penalisation method (SIMP) developed based on elemental volume fractions and an existing AM filter. Manufacturability of selected simulation results are verified with Fused Deposition Modeling (FDM) technology. It is illustrated that the proposed method is able to generate convergent self-supporting topologies which are printable using FDM.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available