4.5 Article

Silencing of LINC01116 suppresses the development of oral squamous cell carcinoma by up-regulating microRNA-136 to inhibit FN1

Journal

CANCER MANAGEMENT AND RESEARCH
Volume 11, Issue -, Pages 6043-6059

Publisher

DOVE MEDICAL PRESS LTD
DOI: 10.2147/CMAR.S197583

Keywords

long non-coding RNA LINC01116; fibronectin 1; microRNA-136; oral squamous cell carcinoma; epithelial-mesenchymal transition; lymph node metastasis

Categories

Funding

  1. Natural Science Foundation of Guangdong Province [2017A030313891]
  2. Natural Science Foundation of Henan Province [182300410319]
  3. Open Fund of Guangdong Provincial Key Laboratory of Oral Diseases, Sun Yat-sen University [KF2017120103]

Ask authors/readers for more resources

Background: Oral squamous cell carcinoma (OSCC), one of the most common cancers worldwide with a high mortality rate, is accompanied by poor prognosis, highlighting the significance of early diagnosis and effective treatment. Long non-coding RNAs (lncRNAs) have been linked with the development and progression of various cancers. In this study, aberrantly expressed lncRNA LINC01116, microRNA-136 (miR-136), and fibronectin1 (FN1) were identified in OSCC using a microarray analysis. Therefore, this study aimed to investigate the role of LINC01116/miR-136/FN1 regulatory axis in OSCC. Methods: The gain-of-function and loss-of-function experiments in vitro were performed to alter the expression of LINC01116 and miR-136 in OSCC cells to elucidate their effects on cellular processes, including epithelial-mesenchymal transition (EMT), viability, invasion, and migration. In addition, the interaction among LINC01116, miR-136, and FN1 was identified. Additionally, the tumorigenicity and lymph node metastasis (LNM) affected by LINC01116 were observed through xenograft tumor in nude mice. Results: LINC01116 and FN1 were abundant in both OSCC tissues and cells, while miR-136 was poorly expressed. LINC01116 could competitively bind to miR-136, which targets and negatively regulates FN1. Moreover, in response to LINC01116 silencing or miR-136 over-expression, OSCC cells exhibited diminished EMT process and inhibited cell viability, invasion, and migration in vitro, coupling with impaired tumorigenicity and LNM in vivo. Conclusion: The fundamental findings in this study collectively demonstrate that LINC01116 silencing may inhibit the progression of OSCC via the miR-136-mediated FN1 inhibition, highlighting a promising therapeutic strategy for OSCC treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available