4.6 Article

DNA released from neutrophil extracellular traps (NETs) activates pancreatic stellate cells and enhances pancreatic tumor growth

Journal

ONCOIMMUNOLOGY
Volume 8, Issue 9, Pages -

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/2162402X.2019.1605822

Keywords

Desmoplastic stroma; neutrophil extracellular traps (NETs); damage associated molecular pattern molecules (DAMPs); receptor for advanced glycation end products (RAGE); Padi4; DNase; pancreatic adenocarcinoma

Funding

  1. National Institutes of Health National Cancer Institute [T32 CA113263]
  2. Project Purple Fellowship grant
  3. National Cancer Institute [T32 CA113263, R01 CA160417-01A1]
  4. Project Purple

Ask authors/readers for more resources

Neutrophil extracellular trap (NET) formation results in the expulsion of granulocyte proteins and DNA into the extracellular space. This process is mediated by the enzyme peptidyl arginine deiminase 4 (PADI4) and translocation of elastase to the nucleus. NET formation, marked by increased levels of extracellular DNA, promotes pancreatic cancer proliferation and metastasis. Mice deficient in Padi4 demonstrate decreased pancreatic tumor growth, associated with a reduction in circulating extracellular DNA levels, diminished pancreatic stromal activation and improved survival in murine orthotopic pancreatic adenocarcinoma. Transplantation of Padi4(-/-) bone marrow into genetically engineered mice with Kras driven pancreatic adenocarcinoma (Pdx1-Cre:Kras(G12D/+), KC mice) limits the frequency of invasive cancers when compared with syngeneic controls. DNA from neutrophils activates pancreatic stellate cells that form dense, fibrous stroma which can promote and enable tumor proliferation. DNase treatment diminishes murine tumor growth and stromal activation to reverse the effect of NETs within the tumor microenvironment. Furthermore, deletion of the receptor for advanced glycation end products (RAGE) in pancreatic stellate cells abrogates the effects of DNA in promoting stellate cell proliferation and decreases tumor growth. Circulating neutrophil-derived DNA correlates with the stage in patients with pancreatic ductal adenocarcinoma, confirming the role of NETs in human pancreatic cancer. These findings support further investigation into targeting of NETs, PADI4 and extracellular DNA as a potential treatment strategy in patients with pancreatic cancer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available