4.6 Article

Machine Learning Techniques for Predicting the Energy Consumption/Production and Its Uncertainties Driven by Meteorological Observations and Forecasts

Journal

SUSTAINABILITY
Volume 11, Issue 12, Pages -

Publisher

MDPI
DOI: 10.3390/su11123328

Keywords

machine learning; monthly forecasts; predictive uncertainty

Funding

  1. Swiss Competence Center for Energy Research-Supply of Electricity (SCCER-SoE)
  2. Commission for Technology and Innovation CTI [2013.0288]

Ask authors/readers for more resources

Reliable predictions of the energy consumption and production is important information for the management and integration of renewable energy sources. Several different Machine Learning (ML) methodologies have been tested for predicting the energy consumption/production based on the information of hydro-meteorological data. The methods analysed include Multivariate Adaptive Regression Splines (MARS) and various Quantile Regression (QR) models like Quantile Random Forest (QRF) and Gradient Boosting Machines (GBM). Additionally, a Nonhomogeneous Gaussian Regression (NGR) approach has been tested for combining and calibrating monthly ML based forecasts driven by ensemble weather forecasts. The novelty and main focus of this study is the comparison of the capability of ML methods for producing reliable predictive uncertainties and the application of monthly weather forecasts. Different skill scores have been used to verify the predictions and their uncertainties and first results for combining the ML methods applying the NGR approach and coupling the predictions with monthly ensemble weather forecasts are shown for the southern Switzerland (Canton of Ticino). These results highlight the possibilities of improvements using ML methods and the importance of optimally combining different ML methods for achieving more accurate estimates of future energy consumptions and productions with sharper prediction uncertainty estimates (i.e., narrower prediction intervals).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available