4.8 Article

Transfer of complex regional pain syndrome to mice via human autoantibodies is mediated by interleukin-1-induced mechanisms

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1820168116

Keywords

CRPS; autoantibody; complex regional pain syndrome; interleukin-1; anakinra

Funding

  1. National Brain Research Program [2017-1.2.1-NKP-2017-00002 (NAP-2)]
  2. Pain Relief Foundation Liverpool, Gazdasagfejlesztesi es Innovacios Operativ Program (Economy Development and Innovation Operative Programme) (GINOP) [2.3.2-15-2016-00050]
  3. Emberi Eroforras Operativ Program (Human Resource Operative Programme) (EFOP) [3.6.2-17-2017-00008 N]
  4. Tarsadalmi Megujulas Operativ Program (Social Renewal Operative Programme) (TAMOP) [4.2.4. A/2-11-1-2012-0001]
  5. Hungarian Brain Research Program [KTIA_13_NAP-A-I/2]
  6. Momentum Program of the Hungarian Academy of Sciences, European Research Council (ERC) [CoG 724994, TET_16-1-2016-0104]
  7. British Heart Foundation [PG/13/55/30365]

Ask authors/readers for more resources

Neuroimmune interactions may contribute to severe pain and regional inflammatory and autonomic signs in complex regional pain syndrome (CRPS), a posttraumatic pain disorder. Here, we investigated peripheral and central immune mechanisms in a translational passive transfer trauma mouse model of CRPS. Small plantar skin-muscle incision was performed in female C57BL/6 mice treated daily with purified serum immunoglobulin G (IgG) from patients with longstanding CRPS or healthy volunteers followed by assessment of paw edema, hyperalgesia, inflammation, and central glial activation. CRPS IgG significantly increased and prolonged swelling and induced stable hyperalgesia of the incised paw compared with IgG from healthy controls. After a short-lasting paw inflammatory response in all groups, CRPS IgG-injected mice displayed sustained, profound microglia and astrocyte activation in the dorsal horn of the spinal cord and pain-related brain regions, indicating central sensitization. Genetic deletion of interleukin-1 (IL-1) using IL-1 alpha beta knockout (KO) mice and perioperative IL-1 receptor type 1 (IL-1R1) blockade with the drug anakinra, but not treatment with the glucocorticoid prednisolone, prevented these changes. Anakinra treatment also reversed the established sensitization phenotype when initiated 8 days after incision. Furthermore, with the generation of an IL-1 beta floxed((fl/fl)) mouse line, we demonstrated that CRPS IgG-induced changes are in part mediated by microglia-derived IL-1 beta, suggesting that both peripheral and central inflammatory mechanisms contribute to the transferred disease phenotype. These results indicate that persistent CRPS is often contributed to by autoantibodies and highlight a potential therapeutic use for clinically licensed antagonists, such as anakinra, to prevent or treat CRPS via blocking IL-1 actions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available