4.3 Article

Carbon-Coated Supraballs of Randomly Packed LiFePO4 Nanoplates for High Rate and Stable Cycling of Li-Ion Batteries

Journal

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/ppsc.201900149

Keywords

carbon; LiFePO4 nanoplates; Li-ion batteries; spray drying; supraballs

Funding

  1. Korean NRF [2018M3D1A1058624, NRF-2014M3A9B8023471]
  2. Human Resources Development Program of KETEP [20124010203270]
  3. Kaneka/SKKU Incubation Center

Ask authors/readers for more resources

One of the key strategies used to obtain high-rate Li-ion battery is the reduction of the Li-ion path length inside the active materials and the enhancement of the ionic diffusion outside the active materials. It is demonstrated that electrochemical performance can be improved significantly at high C-rates using carbon-coated spherical aggregates or supraballs of randomly packed olivine LiFePO4 (LFP) nanoplates as cathode active materials. 258 nm LFP nanoplates with 30 nm thickness are synthesized through a high-temperature solvothermal method, in which short lithium-ion channels are formed perpendicular to the top or bottom planes. These thin nanoplates are formed into carbon-coated supraballs through a spray-drying and thermal annealing process, in which nanoplates are not stacked but randomly packed due to relatively fast drying. Internal and external nanoplate ion diffusion is therefore enhanced simultaneously due to the optimal molecular crystalline structure and interparticle pore structures of the nanoplates. Indeed, the initial capacity of the carbon-coated supraballs is 162 mAh g(-1) (173.34 mAh cm(-3)) at 0.1 C and more than 80% is retained (approximate to 130.91 mAh g(-1)) at 50 C. Furthermore, they offer durable cycling stability (>500 cycles) at 1 C without compromising their capacity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available