4.8 Article

Diverse families of transposable elements affect the transcriptional regulation of stress-response genes in Drosophila melanogaster

Journal

NUCLEIC ACIDS RESEARCH
Volume 47, Issue 13, Pages 6842-6857

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkz490

Keywords

-

Funding

  1. Ministerio de Economia y Competitividad [BFU201457779-P]
  2. Ministerio de Ciencia, Innovacion y Universidades/AEI [BFU2017-82937-P]
  3. European Commission [H2020-ERC-2014-CoG-647900]

Ask authors/readers for more resources

Although transposable elements are an important source of regulatory variation, their genome-wide contribution to the transcriptional regulation of stress-response genes has not been studied yet. Stress is a major aspect of natural selection in the wild, leading to changes in the transcriptional regulation of a variety of genes that are often triggered by one or a few transcription factors. In this work, we take advantage of the wealth of information available for Drosophila melanogaster and humans to analyze the role of transposable elements in six stress regulatory networks: immune, hypoxia, oxidative, xenobiotic, heat shock, and heavy metal. We found that transposable elements were enriched for caudal, dorsal, HSF, and tango binding sites in D. melanogaster and for NFE2L2 binding sites in humans. Taking into account the D. melanogaster population frequencies of transposable elements with predicted binding motifs and/or binding sites, we showed that those containing three or more binding motifs/sites are more likely to be functional. For a representative subset of these TEs, we performed in vivo transgenic reporter assays in different stress conditions. Overall, our results showed that TEs are relevant contributors to the transcriptional regulation of stress-response genes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available