4.8 Article

Coherently driving a single quantum two-level system with dichromatic laser pulses

Journal

NATURE PHYSICS
Volume 15, Issue 9, Pages 941-946

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41567-019-0585-6

Keywords

-

Funding

  1. National Natural Science Foundation of China
  2. Chinese Academy of Science
  3. Science and Technology Commission of Shanghai Municipality
  4. National Fundamental Research Program
  5. State of Bavaria
  6. ERC [617985]
  7. EPSRC Quantum Technology Hub NQIT [EP/M013243/1]
  8. DFG [SCHN1376 5-1]
  9. Anhui Initiative in Quantum Information Technologies
  10. European Research Council (ERC) [617985] Funding Source: European Research Council (ERC)

Ask authors/readers for more resources

The excitation of individual two-level quantum systems using an electromagnetic field is an elementary tool of quantum optics, with widespread applications across quantum technologies. The efficient excitation of a single two-level system usually requires the driving field to be at the same frequency as the transition between the two quantum levels. However, in solid-state implementations, the scattered laser light can dominate over the single photons emitted by the two-level system, imposing a challenge for single-photon sources. Here, we propose a background-free method for the coherent excitation and control of a two-level quantum system using a phase-locked dichromatic electromagnetic field with no spectral overlap with the optical transition. We demonstrate this method experimentally by stimulating single-photon emission from a single quantum dot embedded in a micropillar, reaching single-photon purity of 0.988(1) and indistinguishability of 0.962(6). The phase-coherent nature of our two-colour excitation scheme is demonstrated by the dependence of the resonance fluorescence intensity on the relative phase between the two pulses. Our two-colour excitation method represents an additional and useful tool for the study of atom-photon interaction, and the generation of spectrally isolated indistinguishable single photons.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Physics, Multidisciplinary

Tuning Anomalous Floquet Topological Bands with Ultracold Atoms

Jin-Yi Zhang, Chang-Rui Yi, Long Zhang, Rui-Heng Jiao, Kai-Ye Shi, Huan Yuan, Wei Zhang, Xiong-Jun Liu, Shuai Chen, Jian-Wei Pan

Summary: Floquet engineering allows for the creation of new topological states that cannot be achieved in static systems. In this study, we experimentally realize and characterize anomalous topological states using high-precision Floquet engineering for ultracold atoms trapped in a shaking optical Raman lattice.

PHYSICAL REVIEW LETTERS (2023)

Article Physics, Multidisciplinary

Experimental Mode-Pairing Measurement-Device-Independent Quantum Key Distribution without Global Phase Locking

Hao-Tao Zhu, Yizhi Huang, Hui Liu, Pei Zeng, Mi Zou, Yunqi Dai, Shibiao Tang, Hao Li, Lixing You, Zhen Wang, Yu-Ao Chen, Xiongfeng Ma, Teng-Yun Chen, Jian-Wei Pan

Summary: In the past two decades, quantum key distribution networks based on telecom fibers have been implemented on metropolitan and intercity scales. One of the challenges is the exponential decay of the key rate with transmission distance. However, a recently proposed mode-pairing idea has allowed high-performance quantum key distribution without global phase locking, achieving improved key rates over conventional schemes in both metropolitan and intercity distances.

PHYSICAL REVIEW LETTERS (2023)

Article Engineering, Electrical & Electronic

Amplification of GaSb-Based Diode Lasers in an Erbium-Doped Fluoride Fibre Amplifier

Nikolai B. Chichkov, Amit Yadav, Franck Joulain, Solenn Cozic, Semyon V. Smirnov, Leon Shterengas, Julian Scheuermann, Robert Weih, Johannes Koeth, Sven Hofling, Ulf Hinze, Samuel Poulain, Edik U. Rafailov

Summary: Building upon recent advances in GaSb-based diode lasers and Er-doped fluoride fibre technologies, this article demonstrates the fibre-based amplification of mid infrared diode lasers around 2.78 μm for the first time. The experimental results show output powers up to 0.9 W, pulse durations as short as 20 ns, and pulse repetition rates up to 1 MHz. Additionally, the impact of different fibre end-cap materials on laser performance is analyzed.

IEEE PHOTONICS JOURNAL (2023)

Article Materials Science, Multidisciplinary

Independent Tuning of Exciton and Photon Energies in an Exciton-Polariton Condensate by Proton Implantation-Induced Interdiffusion

Michael D. Fraser, H. Hoe Tan, Yago del Valle Inclan Redondo, Hima Kavuri, Elena A. Ostrovskaya, Christian Schneider, Sven Hoefling, Yoshihisa Yamamoto, Seigo Tarucha

Summary: The use of high energy proton implantation allows for precise and independent manipulation of both exciton and photon energies in GaAs microcavity exciton-polaritons. This technique involves post-growth proton implantation and annealing steps to induce small local interdiffusion, resulting in energy shifts in exciton or photon components. The polariton mode can be tuned by more than 10 meV, altering the effective mass for photon and exciton energy shifts, while maintaining narrow-linewidth polariton emission and condensation.

ADVANCED OPTICAL MATERIALS (2023)

Article Pediatrics

Effect of GATA3 rs3824662 gene polymorphism in Han Chinese children with pre-B-cell acute lymphoblastic leukemia with 10 years follow-up

Xinran Chu, Maoxiang Qian, Jin Yang, Dong Wu, Jing Gao, Lu Cao, Fang Fang, Jian Pan, Hui Zhang, Shaoyan Hu

Summary: The study aimed to evaluate the influence of GATA3 rs3824662 on pre-B-cell ALL susceptibility and long-term prognosis in Han Chinese children. The results showed that GATA3 rs3824662 was associated with susceptibility to pre-B-cell ALL and could be a risk factor for poor treatment response and treatment-related sepsis.

FRONTIERS IN PEDIATRICS (2023)

Article Nutrition & Dietetics

Weight loss in children undergoing allogeneic hematopoietic stem cell transplantation within the first 100 days: Its influencing factors and impact on clinical outcomes

Mei Yan, Jian Pan, Jie Huang, Changwei Liu, Xiaona Xia, Ting Zhu, Yuanyuan Wan, Yongjun Fang, Weibing Tang

Summary: This study evaluated the nutritional status of children who underwent allogeneic hematopoietic stem cell transplantation (alloHSCT) in the first 100 days. The study aimed to clarify the effect of weight loss on clinical outcomes and to analyze factors influencing weight loss. Data from 80 pediatric patients were collected and analyzed to investigate the factors affecting weight loss and the impact of weight loss on clinical outcomes.

FRONTIERS IN NUTRITION (2023)

Article Physics, Applied

Optical properties of circular Bragg gratings with labyrinth geometry to enable electrical contacts

Quirin Buchinger, Simon Betzold, Sven Hoefling, Tobias Huber-Loyola

Summary: We conducted an optical study on various device designs of electrically contactable circular Bragg grating cavities in labyrinth geometries. In order to establish an electrical connection between the central disk and the surrounding membrane, we introduced connections between the adjacent rings separated by air gaps. By rotating these connections to create a labyrinth-like structure, we improved mode confinement, far-field pattern, and Purcell factor compared to layouts with connections arranged in straight lines. Reflectivity measurements and simulations were conducted to investigate the effects of different arrangements and sizes of connections on the optical properties and to determine the optimal design.

APPLIED PHYSICS LETTERS (2023)

Article Physics, Multidisciplinary

Unconditional and Robust Quantum Metrological Advantage beyond N00N States

Jian Qin, Yu-Hao Deng, Han-Sen Zhong, Li-Chao Peng, Hao Su, Yi-Han Luo, Jia-Min Xu, Dian Wu, Si-Qiu Gong, Hua-Liang Liu, Hui Wang, Ming-Cheng Chen, Li Li, Nai-Le Liu, Chao-Yang Lu, Jian-Wei Pan

Summary: Quantum metrology aims to enhance measurement sensitivity by utilizing quantum resources. We propose and realize a novel quantum metrology scheme that combines unconventional nonlinear interferometers and stimulated emission of squeezed light. Our method achieves a scalable, unconditional, and robust quantum metrological advantage, outperforming ideal 5-N00N states. The demonstrated enhancement in Fisher information per photon, without discounting for imperfections or photon loss, makes our approach applicable in practical quantum metrology at low photon flux regime.

PHYSICAL REVIEW LETTERS (2023)

Article Physics, Multidisciplinary

Full-Period Quantum Phase Estimation

Li-Zheng Liu, Yue-Yang Fei, Yingqiu Mao, Yi Hu, Rui Zhang, Xu-Fei Yin, Xiao Jiang, Li Li, Nai-Le Liu, Feihu Xu, Yu-Ao Chen, Jian-Wei Pan

Summary: In this study, a full-period quantum phase estimation approach is proposed and demonstrated. The approach adopts Kitaev's phase estimation algorithm to eliminate phase ambiguity and uses GHZ states to obtain phase values. Through an eight-photon experiment, the estimation of unknown phases in a full period is achieved, and the phase super-resolution and sensitivity beyond the shot-noise limit are observed. This research provides a new way for quantum sensing and represents a solid step towards its general applications.

PHYSICAL REVIEW LETTERS (2023)

Article Physics, Multidisciplinary

Experimental Simulation of Larger Quantum Circuits with Fewer Superconducting Qubits

Chong Ying, Bin Cheng, Youwei Zhao, He-Liang Huang, Yu-Ning Zhang, Ming Gong, Yulin Wu, Shiyu Wang, Futian Liang, Jin Lin, Yu Xu, Hui Deng, Hao Rong, Cheng-Zhi Peng, Man -Hong Yung, Xiaobo Zhu, Jian-Wei Pan

Summary: Although NISQ quantum computing devices are still limited in terms of qubit quantity and quality, quantum computational advantage has been experimentally demonstrated. Hybrid quantum and classical computing architectures have become the main paradigm for exhibiting NISQ applications, with the use of low-depth quantum circuits. This study demonstrates a circuit-cutting method for simulating quantum circuits with multiple logical qubits using only a few physical superconducting qubits, showcasing higher fidelity and scalability.

PHYSICAL REVIEW LETTERS (2023)

Article Physics, Multidisciplinary

Solving Graph Problems Using Gaussian Boson Sampling

Yu-Hao Deng, Si-Qiu Gong, Yi-Chao Gu, Zhi-Jiong Zhang, Hua-Liang Liu, Hao Su, Hao-Yang Tang, Jia-Min Xu, Meng-Hao Jia, Ming-Cheng Chen, Han-Sen Zhong, Hui Wang, Jiarong Yan, Yi Hu, Jia Huang, Wei -Jun Zhang, Hao Li, Xiao Jiang, Lixing You, Zhen Wang, Li Li, Nai-Le Liu, Chao -Yang Lu, Jian-Wei Pan

Summary: Gaussian boson sampling (GBS) is a protocol for demonstrating quantum computational advantage and is mathematically associated with graph-related and quantum chemistry problems. This study investigates the enhancement of GBS over classical stochastic algorithms on noisy quantum devices in the computationally interesting regime. Experimental results show the presence of GBS enhancement with a large photon-click number and robustness under certain noise, which may stimulate the development of more efficient classical and quantum-inspired algorithms.

PHYSICAL REVIEW LETTERS (2023)

Article Instruments & Instrumentation

Free-running 4H-SiC single-photon detector with ultralow afterpulse probability at 266 nm

Chao Yu, Tianyi Li, Xian-Song Zhao, Hai Lu, Rong Zhang, Feihu Xu, Jun Zhang, Jian-Wei Pan

Summary: In this study, a 4H-SiC single-photon avalanche diode (SPAD) based free-running ultraviolet single-photon detector (UVSPD) with ultralow afterpulse probability is reported. A beveled mesa structure is designed and fabricated for the 4H-SiC SPAD, which shows the characteristic of ultralow dark current. A readout circuit of passive quenching and active reset with a tunable hold-off time setting is further developed to significantly suppress the afterpulsing effect. The nonuniformity of photon detection efficiency (PDE) across the SPAD active area is investigated for performance optimization. The compact UVSPD shows a PDE of 10.3%, a dark count rate of 133 kcps, and an afterpulse probability of 0.3% at 266 nm, indicating its potential for practical ultraviolet photon-counting applications.

REVIEW OF SCIENTIFIC INSTRUMENTS (2023)

Article Multidisciplinary Sciences

Eliminating temporal correlation in quantum-dot entangled photon source by quantum interference

Run-Ze Liu, Yu-Kun Qiao, Han-Sen Zhong, Zhen-Xuan Ge, Hui Wang, Tung-Hsun Chung, Chao-Yang Lu, Yong-Heng Huo, Jian-Wei Pan

Summary: Semiconductor quantum dots have demonstrated deterministic photon pair generation with high polarization entanglement fidelity for quantum information applications. However, the limited photon indistinguishability due to temporal correlation hinders their scalability to multi-photon experiments. In this study, by utilizing quantum interferences to decouple polarization entanglement from temporal correlation, the entanglement fidelity of four-photon Greenberger-Horne-Zeilinger (GHZ) state is improved. This work paves the way for realizing scalable and high-quality multi-photon states from quantum dots.

SCIENCE BULLETIN (2023)

Article Quantum Science & Technology

Quantum frequency conversion and single-photon detection with lithium niobate nanophotonic chips

Xina Wang, Xufeng Jiao, Bin Wang, Yang Liu, Xiu-Ping Xie, Ming-Yang Zheng, Qiang Zhang, Jian-Wei Pan

Summary: This study demonstrates a low-noise quantum frequency conversion (QFC) process on the LNOI nanophotonic platform, achieving an internal conversion efficiency of 73% and an on-chip noise count of 900 counts per second (cps). The preservation of quantum statistical properties is also verified, indicating the potential applications of LNOI integrated circuits in quantum information. Additionally, an upconversion single-photon detector with a detection efficiency of 8.7% and a noise of 300 cps is constructed, paving the way for on-chip integrated single-photon detection.

NPJ QUANTUM INFORMATION (2023)

Article Physics, Multidisciplinary

Observation of many-body scarring in a Bose-Hubbard quantum simulator

Guo-Xian Su, Hui Sun, Ana Hudomal, Jean-Yves Desaules, Zhao-Yu Zhou, Bing Yang, Jad C. Halimeh, Zhen-Sheng Yuan, Zlatko Papie, Jian-Wei Pan

Summary: The ongoing quest for understanding nonequilibrium dynamics of complex quantum systems has led to the discovery of quantum many-body scarring. This phenomenon allows for the delay of thermalization by preparing the system in special initial states. In this study, the researchers demonstrate many-body scarring in a Bose-Hubbard quantum simulator, using previously unknown initial conditions. This work opens up new possibilities for exploring the relationship between scarring and various quantum phenomena.

PHYSICAL REVIEW RESEARCH (2023)

No Data Available