4.7 Article

Oncoprotein Inhibitor Rigosertib Loaded in ApoE-Targeted Smart Polymersomes Reveals High Safety and Potency against Human Glioblastoma in Mice

Journal

MOLECULAR PHARMACEUTICS
Volume 16, Issue 8, Pages 3711-3719

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.molpharmaceut.9b00691

Keywords

brain tumor; RAS inhibitor; nanomedicines; blood-brain barrier; targeted delivery

Funding

  1. National Natural Science Foundation of China [NSFC 51773145, 51473110, 51633005, 51761135117]

Ask authors/readers for more resources

The unbiased cytotoxicity and blood-brain barrier (BBB) impermeability render common chemotherapeutics nonviable for treating glioblastoma (GBM) patients. Although rigosertib (RGS), a RAS effector protein inhibitor, has shown low toxicity to healthy cells and high efficacy toward various cancer cells by inactivating PI3K-Akt, it hardly overcomes the BBB barricade. Here, we report that RGS loaded in apolipoprotein E derived peptide (ApoE)-targeted chimaeric polymersomes (ApoE-CP) is safe and highly potent against human GBM in vivo. ApoE-CP exhibited stable loading of RGS in its lumen, giving RGS nanoformulations (ApoE-CP-RGS) with a size of 60 nm and reduction-triggered drug release behavior. Notably, ApoE-CP-RGS induction markedly enhanced the G2/M cell cycle arrest and inhibitory effect in U-87 MG glioblastoma cells compared with the nontargeted CP-RGS and free RGS. The therapeutic outcomes in orthotopic U-87 MG GBM models demonstrated that ApoE-CP-RGS brought about effective GBM inhibition, greatly prolonged survival time, and depleted adverse effects. Rigosertib formulated in ApoE-targeted chimaeric polymersomes has emerged as a novel, highly specific, efficacious, and nontoxic treatment for glioblastoma.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available