4.2 Article

Synthesis, in vitro assays, molecular docking, theoretical ADMET prediction, and evaluation of 4-methoxy-phenylthiazole-2-amine derivatives as acetylcholinesterase inhibitors

Journal

MEDICINAL CHEMISTRY RESEARCH
Volume 28, Issue 10, Pages 1683-1693

Publisher

SPRINGER BIRKHAUSER
DOI: 10.1007/s00044-019-02405-6

Keywords

Acetylcholinesterase (AChE); Phenylthiazole; Molecular docking; AutoDock; ADMET

Funding

  1. Natural Science Foundation of Hebei Province [H2017201075]

Ask authors/readers for more resources

Based on the cholinergic hypothesis of the reported compound, N-(4-(4-methoxy-phenyl)thiazol-2-yl)-3-(pyrrolidin-1-yl)propionamide, which had a good inhibitory activity to acetylcholinesterase (AChE), the new 4-methoxy-phenylthiazole-2-amine derivatives as AChE inhibitors (AChEIs) have been designed and synthesized in this study. Their chemical structures were confirmed by proton nuclear magnetic resonance, carbon-13 nuclear magnetic resonance, mass spectrometry, and infrared. Furthermore, their inhibitory activities against AChE in vitro were also tested by Ellman spectrophotometry, and the inhibitory activity test results showed that most of the compounds of 4-methoxy-phenylthiazole-2-amine derivatives had a certain AChE inhibitory activity in vitro, and the IC50 (half-maximal inhibitory concentration) value of compound 5g was 5.84 mu mol/L, which was higher than that of the reference compound, rivastigmine. Moreover, it had almost no inhibitory effect on butyrylcholinesterase. In addition, compound 5g was subjected to enzyme inhibition kinetics experiments, and the result of Lineweaver-Burk's V-1-[S](-1) double-reciprocal plot showed that the acting type of compound 5g was mixed inhibition type. Furthermore, the AChE inhibitory activity mechanism of compound 5g was explored by the conformational analysis and molecular docking, which was based on the principle of the four-point pharmacophore model necessary for AChE inhibition. Finally, in silico molecular property and ADMET (absorption, distribution, metabolism, excretion, and toxicity) of the synthesized compounds were predicted by using Molinspiration and PreADMET online servers, respectively. It can be concluded that the lead AChEI compound 5g presented satisfactory drug-like characteristics and ADME properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available