4.7 Article

Properties of a-C:H:Si thin films deposited by middle-frequency magnetron sputtering

Journal

APPLIED SURFACE SCIENCE
Volume 379, Issue -, Pages 516-522

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apsusc.2016.04.014

Keywords

a-C:H:Si films; Magnetron sputtering; Structure; Tribological properties

Funding

  1. National Natural Science Foundation of China [51105186]

Ask authors/readers for more resources

The silicon doped hydrogenated amorphous carbon (a-C:H:Si) films were prepared on silicon substrates by middle-frequency magnetron sputtering silicon target in an argon and methane gas mixture atmosphere. The deposition rate, chemical composition, structure, surface properties, stress, hardness and tribological properties in the ambient air of the films were systemically investigated using X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscopy (AFM), nanoindentation and tribological tester. The results show that doped silicon content in the films is controlled in the wide range from 39.7 at.% to 0.2 at.% by various methane gas flow rate, and methane flow rate affects not only the silicon content but also its chemical bonding structure in the films due to the transformation of sputtering modes. Meanwhile, the sp(3) carbon component in the films linearly increases with increasing of methane flow rate. The film deposited at moderate methane flow rate of 40-60 sccm exhibits the very smooth surface (RMS roughness 0.4 nm), low stress (0.42 GPa), high hardness (21.1 GPa), as well as low friction coefficient (0.038) and wear rate (1.6 x 10(-7) mm(3)/Nm). The superior tribological performance of the films could be attributed to the formation and integral covering of the transfer materials on the sliding surface and their high hardness. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Chemistry, Physical

Construction of CeO2/YMnO3 and CeO2/MgAl2O4/YMnO3 photocatalysts and adsorption of dyes and photocatalytic oxidation of antibiotics: Performance prediction, degradation pathway and mechanism insight br

Shifa Wang, Maoyuan Li, Huajing Gao, Zijuan Yin, Chaoli Chen, Hua Yang, Leiming Fang, Jagadeesha Angadi, Zao Yi, Dengfeng Li

Summary: A simple two-step method was developed to fabricate ternary heterojunctions of YMnO3/CeO2/MgAl2O4 composite photocatalysts, which exhibited good adsorption capacity and photocatalytic activity. The GA model showed the best predictive ability for the adsorption capacity. The YCM photocatalysts displayed high optical absorption coefficient, charge carrier transfer and separation efficiency, adsorbed oxygen concentration and interface defect, high adsorption capacity, and photocatalytic activity. This study demonstrated the huge potential of YCM composite photocatalysts for eco-friendly adsorption of dye and degradation of drugs.

APPLIED SURFACE SCIENCE (2023)

Article Chemistry, Physical

Development of highly-efficient 0D/1D/0D dual Z-scheme CdS/ZnWO4/ZnS heterojunction photocatalysts in pollutant removal and involved mechanism

Jiao Zhang, Xiaofeng Sun, Jinyuan Ma, Zao Yi, Tao Xian, Shifa Wang, Guorong Liu, Xiangxian Wang, Hua Yang

Summary: Rational design of heterostructures is an effective strategy for enhancing the photocatalytic activity of semiconductors. In this study, a dual Z-scheme CdS/ZWO/ZnS heterojunction photocatalyst was synthesized by assembling zero-dimensional CdS and ZnS quantum dots onto one-dimensional ZnWO4 nanorods. The photocatalytic experiments demonstrated that the dual Z-scheme heterojunction photocatalyst exhibited significantly higher photodegradation activity compared to individual CdS, ZnS, and binary CdS/ZWO and ZnS/ZWO heterojunctions. The characteristics and photocatalytic mechanism of the CdS/ZWO/ZnS photocatalysts were investigated using various measurement techniques and computational calculations.

APPLIED SURFACE SCIENCE (2023)

Article Materials Science, Ceramics

Selective removal of antibiotics over MgAl2O4/C3N4/YMnO3 photocatalysts: Performance prediction and mechanism insight

Maoyuan Li, Shifa Wang, Huajing Gao, Zijuan Yin, Chaoli Chen, Hua Yang, Leiming Fang, Jagadeesha Angadi Veerabhadrappa, Zao Yi, Dengfeng Li

Summary: A simple polyacrylamide gel method combined with low temperature sintering technology has been used to synthesize the C-O functional groups grafted MgAl2O4/C3N4/YMnO3 (MAO-CN-YMO) heterojunction photocatalysts with enhanced visible-light-induced photodegradation toward oxytetracycline hydrochloride (OTC-HCl).

JOURNAL OF THE AMERICAN CERAMIC SOCIETY (2023)

Article Chemistry, Multidisciplinary

Construction of Z-Scheme Ag2MoO4/ZnWO4 Heterojunctions for Photocatalytically Removing Pollutants

Jiao Zhang, Jinyuan Ma, Xiaofeng Sun, Zao Yi, Tao Xian, Xianwen Wu, Guorong Liu, Xiangxian Wang, Hua Yang

Summary: A new type of Ag2MoO4/ZnWO4 composite photocatalyst with a Z-scheme mechanism was developed by anchoring AMO nanoparticles onto ZWO nanorods. The performances and photocatalytic mechanism of the AMO/ZWO heterojunctions were studied through multiple characterization methods and DFT calculations. The enhanced photocatalytic mechanism of the AMO/ZWO heterojunctions was revealed to be the efficient separation of photocarriers via a Z-scheme transfer process, which was confirmed by simulated-sunlight-driven photodegradation experiments and DFT calculations.

LANGMUIR (2023)

Article Materials Science, Multidisciplinary

Constructing Z-scheme AuAg@?-Bi2O3/BiOBr multi-heterojunction for efficient photocatalytic removal of dye, antibiotic and heavy metal ions: Performance and mechanism investigation

Hongqin Li, Tao Xian, Lijing Di, Xiaofeng Sun, Chenyang Sun, Xuelian Ma, Ke Ma, Jianfeng Dai, Hua Yang

Summary: AuAg alloy nanoparticles were decorated on delta-Bi2O3 surface to obtain AuAg@delta-Bi2O3, and then AuAg@delta-Bi2O3 were hydrothermally combined with BiOBr plate to form Z-scheme AuAg@delta-Bi2O3/BiOBr. The photocatalytic activity of samples was evaluated under simulated sunlight irradiation, and the addition of delta-Bi2O3 significantly enhanced the photocatalytic activity of BiOBr. The introduction of AuAg nanoparticles further improved the photocatalytic activity, leading to highly efficient removal of pollutants. The presence of AuAg alloy nanoparticles at the interface of Z-scheme delta-Bi2O3/BiOBr promoted the separation of photogenerated charges through a Z-scheme charge migration mechanism.

OPTICAL MATERIALS (2023)

Article Materials Science, Multidisciplinary

Visible-light-enhanced photocatalytic activity of BaTiO3/γ-Al2O3 composite photocatalysts for photodegradation of tetracycline hydrochloride

Chuan Yu, Shifa Wang, Kening Zhang, Maoyuan Li, Huajing Gao, Jing Zhang, Hua Yang, Lei Hu, Angadi. V. Jagadeesha, Dengfeng Li

Summary: A polyacrylamide gel method combined with low temperature sintering technology was used to fabricate BaTiO3/gamma-Al2O3 composite photocatalysts with excellent photocatalytic activity for the degradation of tetracycline hydrochloride under simulated sunlight. The effects of BaTiO3/ gamma-Al2O3 mass percentages, drug concentrations and pH values on photocatalytic activity were investigated. The optimum conditions were found to be 5 wt% BaTiO3/ gamma-Al2O3, 50 mg/L drug concentration, and pH 6.77. The enhanced photocatalytic activity of BaTiO3/ gamma-Al2O3 was attributed to the defect states in alumina, interfacial defects between barium titanate and alumina, and the type II band arrangement structure.

OPTICAL MATERIALS (2023)

Article Optics

Ultra long infrared metamaterial absorber with high absorption and broad band based on nano cross surrounding

Shiri Liang, Feng Xu, Hua Yang, Shubo Cheng, Wenxing Yang, Zao Yi, Qianjv Song, Pinghui Wu, Jing Chen, Chaojun Tang

Summary: This study achieves wideband absorption in the long wavelength infrared range using a metamaterial absorber based on nanowire cross surrounding. The absorber has polarization independence and high absorptivity in the LWIR band, which can be adjusted by changing the geometric parameters. It is suitable for infrared imaging, thermoelectronic devices, and thermal detection applications.

OPTICS AND LASER TECHNOLOGY (2023)

Article Chemistry, Physical

High confidence plasmonic sensor based on photonic crystal fibers with a U-shaped detection channel

Wanlai Zhu, Yingting Yi, Zao Yi, Liang Bian, Hua Yang, Jianguo Zhang, Yang Yu, Chao Liu, Gongfa Li, Xianwen Wu

Summary: To improve optical fiber sensing performance and broaden its application, a photonic crystal fiber (PCF) plasmonic sensor with a U-shaped channel based on surface plasmon resonance (SPR) is proposed in this study. The influence rules of structural parameters, such as the radius of the air hole, the thickness of the gold film, and the number of U-shaped channels, were investigated using COMSOL and the finite element method. The dispersion curves, loss spectrum, and electric field intensity distribution were studied under various conditions. The proposed sensor achieved a maximum refractive index sensitivity of 24.1 mu m RIU-1 in the RI range of 1.38-1.43, with a FWHM of 10.0 nm, a FOM of 2410 RIU-1, and a resolution of 4.15 x 10(-6) RIU. The sensor combines the highly sensitive SPR effect and allows for real-time detection of the external environment. The detection range and sensitivity can be increased by adjusting the structural parameters. The sensor has a simple structure and excellent performance, providing a new approach for real-time detection and highly integrated sensing.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2023)

Article Optics

Theoretical study on fabrication of sub-wavelength structures via combining low-order guided mode interference lithography with sample rotation

Yaqian Ren, Xiangxian Wang, Xiujuan Di, Tianxu Jia, Tianshan Chen, Liping Zhang, Hua Yang, Yunping Qi, Chaojun Tang

Summary: This study investigates the guided mode interference lithography technique using a symmetric metal-cladding dielectric waveguide structure. By adjusting the thickness of the resist and rotating the sample, periodic sub-wavelength gratings with different structures can be fabricated successfully.

JOURNAL OF OPTICS (2023)

Article Chemistry, Physical

Experimental and theoretical elucidation of adsorption performance and mechanism of surface-engineered BiVO4 hollow cuboids for removing MB and other pollutants

Qianfei Ma, Jinyuan Ma, Zhansheng Lu, Kanghui Yao, Zao Yi, Xianwen Wu, Xiujuan Chen, Hua Yang

Summary: A new type of BiVO4 hollow cuboids was synthesized via a hydrothermal reaction route, and O vacancies were created on their surface through NaBH4 treatment. The surface-engineered BiVO4 exhibited an adsorption performance about 96.4 times greater than that of pristine BiVO4 in removing methylene blue. Adsorption kinetics, isotherms, and thermodynamics analyses revealed a spontaneous, exothermic, and heterogeneous multilayer adsorption process. The adsorption mechanism of the surface-engineered BiVO4 was elucidated based on experimental and theoretical calculations.

JOURNAL OF MOLECULAR LIQUIDS (2023)

Article Materials Science, Multidisciplinary

Highly-efficient and recyclable Bi2O2CO3 adsorbent achieved by surfactant modification and its application in pollutant removal

Chaoli Chen, Jinyuan Ma, Zao Yi, Shifa Wang, Huajing Gao, Yong Wang, Hua Yang

Summary: A highly efficient and recyclable Bi2O2CO3 (BOC) adsorbent with excellent adsorption performance for removing organic pollutants and Cr(VI) ions has been developed using different surfactants during the hydrothermal synthesis of BOC nanostructures. The CTAB modified BOC sample (BOC-CTAB) demonstrates the highest adsorption performance and can be easily regenerated through a simple photodegradation process. The adsorption kinetics, isotherms and thermodynamics of methyl orange (MO) and Cr(VI) onto BOC-CTAB were systematically investigated.

MATERIALS RESEARCH BULLETIN (2023)

Article Chemistry, Physical

Enhancing the piezo-photocatalytic tetracycline degradation activity of BiOBr by the decoration of AuPt alloy nanoparaticles: Degradation pathways and mechanism investigation

Tao Xian, Xiaofeng Sun, Lijing Di, Chenyang Sun, Hongqin Li, Caixia Ma, Hua Yang

Summary: AuPt/BiOBr composite with AuPt alloy nanoparaticles decorated on BiOBr surface was prepared via photoreduction. It showed significantly enhanced photocatalytic degradation ability compared with Au/BiOBr, Pt/BiOBr, and bare BiOBr. The piezo-photocatalytic removal activity of AuPt/BiOBr towards tetracycline (TC) degradation was evaluated under simulated sunlight and ultrasound irradiation, and exhibited superior performance to individual piezo and photocatalytic results.

APPLIED SURFACE SCIENCE (2023)

Article Chemistry, Physical

Heterojunction interface field and piezoelectric polarization field cooperatively facilitating photocarrier separation in heterojunction piezo-photocatalysts: Experimental and theoretical characterization

Xiaofeng Sun, Tao Xian, Ruishan Li, Hua Yang

Summary: In this study, novel 13-Bi2O3/BiFeO3 heterojunctions were designed to enhance the piezo-photocatalytic activity for tetracycline hydrochloride (TC) elimination. The results showed that the optimal composite 9.1 %BO/BFO had a photodegradation activity 5.2 times higher than that of BiFeO3 and 1.9 times higher than that of 13-Bi2O3, which can be explained by the heterojunction-interface-field-induced Z-scheme photocarrier transfer mechanism. The piezo-photodegradation activity of the 9.1 %BO/BFO composite was further increased under both simulated sunlight and ultrasonic irradiation, demonstrating a synergistic enhancement between photocatalysis and piezocatalysis.

COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS (2023)

Article Chemistry, Physical

Tunable broadband absorber based on a layered resonant structure with a Dirac semimetal

Wenxin Li, Jing Ma, Huafeng Zhang, Shubo Cheng, Wenxing Yang, Zao Yi, Hua Yang, Jianguo Zhang, Xianwen Wu, Pinghui Wu

Summary: In this research, a tunable broadband absorber based on a layered resonant structure was designed, which achieved high absorption (more than 0.9) in the frequency range of 18-28 THz. The high absorption was attributed to strong resonance absorption between the layers and the resonance of the localised surface plasmon. The absorber, consisting of three layers of Dirac semimetal and three layers of optical crystal plates on a gold substrate, also showed tunability and absorption stability.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2023)

Article Chemistry, Physical

Insight on the enhanced piezo-photocatalytic mechanism of In2O3/BiFeO3 heterojunctions for degradation of tetracycline hydrochloride

Xiaofeng Sun, Ting Xu, Tao Xian, Zao Yi, Guorong Liu, Jianfeng Dai, Hua Yang

Summary: Development of In2O3/BiFeO3 heterojunctions as highly-efficient piezo-photocatalysts for environmental depollution by degrading tetracycline hydrochloride (TC) has been investigated. The results showed that the optimal composite 10.7%IO/BFO exhibited significantly enhanced piezo-photocatalytic activity compared to In2O3 and BiFeO3, with photodegradation activity increased by 2.05 and 3.97 times, respectively. The study also revealed a synergistic enhancement between photocatalysis and piezocatalysis, resulting in a larger piezo-photodegradation activity.

APPLIED SURFACE SCIENCE (2023)

Article Chemistry, Physical

Multifunctional continuous solid solution Na0.9Mg0.45Ti3.55O8-Na2Fe2Ti6O16: Preparation, characterization, magnetism, dual absorption, adsorption, and photocatalysis

Qi-Wen Chen, Ze-Qing Guo, Jian-Ping Zhou

Summary: Multifunctional continuous solid solutions NFMTO-x were successfully synthesized via a one-step hydrothermal method by controlling the ratio of Mg and Fe. The NFMTO-x materials exhibited enhanced visible light response, effective adsorption and photocatalytic degradation of organic pollutants, CO2 methanation capability, and easy recyclability due to their magnetic properties. This research provides a significant multifunctional material for water purification.

APPLIED SURFACE SCIENCE (2024)

Review Chemistry, Physical

Critical advances in the field of magnetron sputtered bioactive glass thin-films: An analytical review

George E. Stan, Maziar Montazerian, Adam Shearer, Bryan W. Stuart, Francesco Baino, John C. Mauro, Jose M. F. Ferreira

Summary: Bioactive glasses have the ability to form strong bonds with tissues and release therapeutic ions. However, their biomechanical compatibility limits their use in load-bearing applications. The use of magnetron sputtering technology to fabricate BG coatings shows promise in improving their efficacy and potential for application.

APPLIED SURFACE SCIENCE (2024)

Article Chemistry, Physical

Corrosion mode evaluation of Fe-based glassy alloys with metalloid elements by electrochemical noise (EN)

Zhaoxuan Wang, Zhicheng Yan, Zhigang Qi, Yu Feng, Qi Chen, Ziqi Song, Meng Huang, Peng Jia, Ki Buem Kim, Weimin Wang

Summary: The corrosion behavior of Fe-60 and Fe-83 ribbons in 0.6 M NaCl was studied. Fe-60 exhibited a local corrosion mode and formed a stable passivation film with higher corrosion resistance, while Fe-83 showed a combination of local and global corrosion modes and had lower corrosion resistance. Controlling the precipitation of nanocrystalline phases and increasing the POx content in the passivation film significantly improved the corrosion resistance of Fe-based glassy alloys.

APPLIED SURFACE SCIENCE (2024)

Article Chemistry, Physical

Impacts of Zr content of HfZrOx-Based FeFET memory on resilience towards proton radiation

Hao-Kai Peng, Sheng-Yen Zheng, Wei-Ning Kao, Ting-Chieh Lai, Kai-Sheun Lee, Yung- Hsien Wu

Summary: This study investigates the effects of high energy/fluence proton radiation on the performance of HfZrOx-based FeFETs memory with different Zr content. The results show that the characteristics of FeFETs are influenced by proton radiation, and the extent of the influence depends on the Zr content. FeFETs with 50% Zr content exhibit minimal changes in memory window and demonstrate good endurance and retention performance.

APPLIED SURFACE SCIENCE (2024)

Article Chemistry, Physical

Excellent crystalline silicon surface passivation by transparent conductive Al-doped ZnO/ITO stack

Zongyi Yue, Guangyi Wang, Zengguang Huang, Sihua Zhong

Summary: In this study, AZO and ITO films were successfully tuned as excellent passivation layers for c-Si surfaces, achieving effective minority carrier lifetime and outstanding optical properties through the optimization of annealing temperature and interfacial silicon oxide.

APPLIED SURFACE SCIENCE (2024)

Article Chemistry, Physical

Hydrogen sensing capabilities of highly nanoporous black gold films

Martin Hruska, Jan Kejzlar, Jaroslav Otta, Premysl Fitl, Michal Novotny, Jakub Cizek, Oksana Melikhova, Matej Micusik, Peter Machata, Martin Vrnata

Summary: This paper presents a detailed study on the hydrogen sensing capabilities of highly nanoporous black gold films. The films exhibit fast response and recovery times at low temperatures. Different levels of nanoporosity were prepared and tested to investigate the sensing properties, and it was found that nanoporous black gold is suitable for hydrogen sensing. The sensitivity of the film depends on its nanoporosity.

APPLIED SURFACE SCIENCE (2024)

Article Chemistry, Physical

Abnormal stability of hydrogenic defects and magnetism near the HSrCoO2.5(001) surface

Yupu Wang, Gaofeng Teng, Chun To Yiu, Junyi Zhu

Summary: In the study of BM-SCO and HSCO thin films, it was found that H vacancies tend to prefer sites near the external surface or oxygen vacancy channels (OVCs), while H interstitials prefer sites of oxygen on a layer that contains six-fold coordinated Co. These findings not only enrich the understanding of complex surface phenomena of defect formation but also provide an explanation for the reversibility during phase transformation.

APPLIED SURFACE SCIENCE (2024)

Article Chemistry, Physical

Space variant fiber nanogratings induced by femtosecond laser direct writing

Jiafeng Lu, Linping Teng, Qinxiao Zhai, Chunhua Wang, Matthieu Lancry, Ye Dai, Xianglong Zeng

Summary: In this study, we achieved full control of fiber nanograting orientation by manipulating laser polarization, and tailored space variant fiber nanogratings, which expanded the diversity in fiber nanograting engineering.

APPLIED SURFACE SCIENCE (2024)

Article Chemistry, Physical

Wetting mechanisms in the mass transfer process of CuSi3 droplets on the TC4 and 304SS multi-metal system controlled by the hybrid shielding gas atmosphere

Yibo Liu, Yujie Tao, Yue Liu, Qi Sun, Qinrong Lin, Kexin Kang, Qinghua Zhang, Qingjie Sun

Summary: This study investigates the wettability of the Ti-Cu-Fe multi-metal system, specifically the wetting behaviors of CuSi3 droplets on TC4 and 304SS plates. The results show that the CO2 + Ar gas atmosphere significantly affects interfacial mass transfer, thus influencing the wettability of the systems.

APPLIED SURFACE SCIENCE (2024)

Article Chemistry, Physical

Size-regulated Co-doped hetero-interfaced 3D honeycomb MXene as high performance electromagnetic absorber with anti-corrosion performance

Jimei Liu, Fei Wang, Rong Guo, Yuqi Liu, Mengyu Zhang, Jaka Sunarso, Dong Liu

Summary: This study developed Co/MXene composites with anti-corrosion properties by varying the cobalt content. These composites exhibited remarkable electromagnetic absorption performance and high resistance to corrosion under various corrosive conditions. The study also revealed the mechanism of electron transfer from cobalt to MXene and the electromagnetic dissipation behavior originated from polarization loss alone.

APPLIED SURFACE SCIENCE (2024)

Article Chemistry, Physical

Ultrafine Ru nanoparticles on nitrogen-doped CNT arrays for HER: A CVD-based protocol achieving microstructure design and strong catalyst-support interaction

Moujie Huang, Yongsong Ma, Jingbo Yang, Lingyun Xu, Hangqi Yang, Miao Wang, Xin Ma, Xin Xia, Junhao Yang, Deli Wang, Chuang Peng

Summary: Strong metal-support interactions (SMSIs) are important for enhancing catalytic activities and stability in thermal catalysis. This study demonstrates a method to create SMSIs in electrocatalysis using carbon nanotubes and Ru nanoparticles, resulting in excellent catalytic activity and stability.

APPLIED SURFACE SCIENCE (2024)

Article Chemistry, Physical

Novel biphenylene as cisplatin anticancer drug delivery carrier; insight from theoretical perspective

Ravi Trivedi, Brinti Mondal, Nandini Garg, Brahmananda Chakraborty

Summary: This study explores the potential of biphenylene as a nanocarrier for the delivery of the anticancer drug cisplatin. It is found that biphenylene offers physical stability, rapid release rate, solubility, and bio-compatibilities compared to other nanocarriers. The adsorption of cisplatin on the surface of biphenylene involves charge transfer from cisplatin to biphenylene. The drug is shown to be released at body temperature in an acidic environment. Biphenylene also exhibits excellent cytotoxicity activity and cellular uptake of the drug. Overall, biphenylene shows promise as a potential nanocarrier for cisplatin delivery.

APPLIED SURFACE SCIENCE (2024)

Article Chemistry, Physical

Platform for surface-enhanced Raman scattering in layered quantum materials

Hyun Jeong, Hyeong Chan Suh, Ga Hyun Cho, Rafael Salas-Montiel, Hayoung Ko, Ki Kang Kim, Mun Seok Jeong

Summary: In this study, a potential platform to enhance Raman scattering and increase the number of observable Raman modes in monolayer transition metal dichalcogenides (TMDs) was proposed. The platform consisted of large-scale arrays of gold micropillars (MPs), which were able to enhance the Raman intensity of TMDs and make difficult-to-detect Raman modes observable. The platform showed great industrial advantages and wide applicability due to its low cost, simple process, large controllable area, and short process time.

APPLIED SURFACE SCIENCE (2024)

Article Chemistry, Physical

Cyclotriphosphazene (P3N3) derived FeOx@SPNO-C core-shell nanospheres as peroxymonosulfate activator for degradation via non-radical pathway

Yasir Abbas, Shafqat Ali, Sajjad Ali, Waqar Azeem, Zareen Zuhra, Haoliang Wang, Mohamed Bououdina, Zhenzhong Sun

Summary: In this study, FeOx@SPNO-C core-shell nanospheres as a catalyst for degradation of sulfamethoxazole (SMX) were successfully synthesized. The synergistic interaction between FeOx and SPNO-C, high carbon charge density, and the presence of C = O groups and N/Fe-Nx sites were found to be key factors for the enhanced degradation of SMX.

APPLIED SURFACE SCIENCE (2024)

Article Chemistry, Physical

Hierarchical confinement of Prussian blue nanoparticles via NH2-MIL-88B (Fe): Rational design and electrocatalytic application

Qiaoting Yang, Yuxiao Gong, Yan Qian, Zhou-Qing Xiao, Serge Cosnier, Xue-Ji Zhang, Robert S. Marks, Dan Shan

Summary: This study proposes a hierarchical confinement strategy to design Prussian blue nanoparticles (PB NPs) with satisfactory electrocatalytic ability and stability. The catalytic synthesis of PB NPs is achieved through a hydrothermal process, and the as-prepared PB@NH2MIL exhibits efficient electronic transmission and enhanced electrocatalytic properties.

APPLIED SURFACE SCIENCE (2024)