4.4 Article

Genome Mininge-Based Identification of Identical Multirepeat Sequences in Plasmodium falciparum Genome for Highly Sensitive Real-Time Quantitative PCR Assay and Its Application in Malaria Diagnosis

Journal

JOURNAL OF MOLECULAR DIAGNOSTICS
Volume 21, Issue 5, Pages 824-838

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jmoldx.2019.04.004

Keywords

-

Categories

Funding

  1. Biotechnology Industry Research Assistance Council [BT/SBIRI/1167/SBIRI-22/13]
  2. Department of Biotechnology, Government of India
  3. Institute of Life Sciences (Bhubaneswar) [ILS/16-17, ILS/17-18]
  4. Jigsaw Bio Solutions Private Limited

Ask authors/readers for more resources

Developing ultrasensitive methods capable of detecting submicroscopic parasitemia-a challenge that persists in low transmission areas, asymptomatic carriers, and patients showing recrudescence-is vital to achieving malaria eradication. Nucleic acid amplification techniques offer improved analytical sensitivity but are limited by the number of copies of the amplification targets. Herein, we perform a novel genome mining approach to identify a pair of identical multirepeat sequences (IMRSs) that constitute 170 and 123 copies in the Plasmodium falciparum genome and explore their potential as primers for PCR. Real-time quantitative PCR analyses have shown the ability of P. falciparum IMRSs to amplify as low as 2.54 fg of P. falciparum genomic DNA (approximately 0.1 parasite), with a striking 100-fold increase in detection limit when compared with P. falciparum 18S rRNA (251.4 fg; approximately 10 parasites). Validation with clinical samples from malaria-endemic regions has shown 6.70 +/- 1.66 cycle better detection threshold in terms of Ct value for P. falciparum IMRSs, with approximately 100% sensitivity and specificity. Plasmodium falciparum IMRS assays are also capable of detecting submicroscopic infections in asymptomatic samples. To summarize, this approach of initiating amplification at multiple loci across the genome and generating more products with increased analytical sensitivity is different from classic approaches amplifying multicopy genes or tandem repeats. This can serve as a platform technology to develop advanced diagnostics for various pathogens.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available