4.4 Article

Comparative Effects of Thermal, High Hydrostatic Pressure, and UV-C Processing on the Quality, Nutritional Attributes, and Inactivation of Escherichia coli, Salmonella, and Listeria Introduced into Tiger Nut Milk

Journal

JOURNAL OF FOOD PROTECTION
Volume 82, Issue 6, Pages 971-979

Publisher

INT ASSOC FOOD PROTECTION
DOI: 10.4315/0362-028X.JFP-18-493

Keywords

High hydrostatic pressure; Quality and nutrition attributes; Thermal processing; Tiger nut milk; UV-C

Funding

  1. Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA)
  2. Libyan Ministry of Education

Ask authors/readers for more resources

Tiger nut milk is a low-acid health beverage that is marketed with the claims of being high in protein, monounsaturated fatty acid (oleic acid), fiber, starch, and minerals, in addition to vitamins C and E. In this study, the effect of nonthermal processing with UV light (UV-C) or high hydrostatic pressure (HHP) on the nutritive content (protein, vitamin C, polyphenols, and antioxidant), and quality characteristics (viscosity and color) of tiger nut milk were compared with thermal processing. Baseline studies established the treatments parameters to support a >5-log CFU reduction of Escherichia coli P36, Listeria innocua ATCC 51742, and Salmonella Typhimurium WG49 introduced into tiger nut milk and then treated with thermal or nonthermal methods. The thermal treatment at 60 degrees C for 30 min, HHP at 500 MPa for 120 s, and UV-C at 45.2 mJ cm(-2) were required to achieve the target 5-log reduction. Thermal treatment resulted in a significant loss (P < 0.05) of total protein (34.9%), total phenolic content (28.7%), and vitamin C (27.1%) and negatively affected the tiger nut milk color, along with decreasing its viscosity. In contrast, HHP and UV-C light treatment retained protein and antioxidant content in tiger nut milk with no significant (P > 0.05) color change being recorded. Therefore, from a processing prospective, either UV-C light or HHP could be used to treat tiger nut milk, although additional hurdles to control the potential outgrowth of Clostridium botulinum during storage would be required. HIGHLIGHTS Thermal and nonthermal methods can support a 5-log CFU reduction of model bacteria introduced into tiger nut milk. Thermal treatment of tiger nut milk results in significant loss of protein, antioxidants, and quality properties. HHP or UV-C treatment of tiger nut milk retains quality and nutritional characteristics. HHP or UV-C are suitable for the pasteurization of tiger nut milk.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Biotechnology & Applied Microbiology

Assessment of Physicochemical and Microbiological Characteristics of Honey in Southwest Ethiopia: Detection of Adulteration through Analytical Simulation

Gemechu G. Abdi, Yetenayet B. Tola, Chala G. Kuyu

Summary: This study evaluated the quality of honey in the supply chain in southwest Ethiopia and found significant differences in physicochemical and microbial quality among different actors. The study also developed a predictive model to detect adulteration, which showed good linearity and predictive capacity.

JOURNAL OF FOOD PROTECTION (2024)

Article Biotechnology & Applied Microbiology

Inactivation of Listeria monocytogenes by Hydrogen Peroxide Addition in Commercial Cheese Brines

Kathleen A. Glass, Jie Yin Lim, Quinn L. Singer

Summary: Commercial cheese brines can be a reservoir for salt-tolerant pathogens. This study found that the addition of hydrogen peroxide can effectively reduce the population of L. monocytogenes in cheese brines, especially at higher temperatures and salt concentrations. The presence of indigenous microorganisms may neutralize the effect of hydrogen peroxide.

JOURNAL OF FOOD PROTECTION (2024)