4.0 Article Proceedings Paper

Dual-energy X-ray Absorptiometry Monitoring with Trabecular Bone Score: 2019 ISCD Official Position

Journal

JOURNAL OF CLINICAL DENSITOMETRY
Volume 22, Issue 4, Pages 501-505

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jocd.2019.07.006

Keywords

Osteoporosis; TBS; monitor; DXA; fracture; treatment

Ask authors/readers for more resources

Trabecular bone score (TBS) is a textural index that evaluates pixel gray level variations in the lumbar spine image by dual-energy X-ray absorptiometry. It provides an indirect assessment of trabecular microarchitecture that is an independent predictor of fracture risk. TBS does not appear to be clinically useful to monitor the skeletal effects of bisphosphonates and denosumab, but is potentially useful as a component of monitoring the skeletal effects of teriparatide and abaloparatide. The least significant change (LSC) for TBS can be conservatively estimated to be about 5.8% (the largest LSC in published data) or calculated by a dual-energy X-ray absorptiometry facility using the same methodology that is used for bone mineral density (BMD) precision assessment to calculate BMD LSC. A review of the best available evidence at the 2019 ISCD Position Development Conference concluded that the role of TBS in monitoring antiresorptive therapy is unclear and that TBS is potentially useful for monitoring anabolic therapy. For patients treated with teriparatide or abaloparatide, a statistically significant increase in TBS may represent a clinically meaningful improvement in trabecular structure. A significant decrease of TBS may represent a worsening of trabecular structure, suggesting the need for further clinical assessment and possible change in treatment strategies. Since BMD measures bone quantity and TBS measures bone quality, these tests can be considered complementary in assessing fracture risk and response to therapy in appropriate patients.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available