4.7 Article

Comparative study on antidiabetic, cytotoxicity, antioxidant and antibacterial properties of biosynthesized silver nanoparticles using outer peels of two varieties of Ipomoea batatas (L.) Lam

Journal

INTERNATIONAL JOURNAL OF NANOMEDICINE
Volume 14, Issue -, Pages 4741-4754

Publisher

DOVE MEDICAL PRESS LTD
DOI: 10.2147/IJN.S210517

Keywords

antidiabetic; antibacterial; antioxidant; cytotoxicity; silver nanoparticles; Ipomoea batatas

Funding

  1. Dongguk University-Seoul, Republic of Korea
  2. Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through High Value-added Food Technology Development Program - Ministry of Agriculture, Food and Rural Affairs (MAFRA) [118056-2]
  3. Korea Environmental Industry & Technology Institute [A117-00197-0703-0]
  4. TDU, Bengaluru, India

Ask authors/readers for more resources

Background: Ipomoea batatas (L.) Lam.(Ib) has high content of various beneficial nutrients which helps in improving and maintaining human health. It is well known as a functional food and also a valuable source of unique natural products. It contains various phenolic and flavonoid bioactive compounds. Methods: In this study, using the outer peel of two varieties of Ib : Korean red skin sweet potato and Korean pumpkin sweet potato, silver nanoparticles (AgNPs) were synthesized (termed Ib1 AgNps and Ib2-AgNps), respectively. Characterization of Ib1-AgNPs and Ib2-AgNPs was carried out through scanning electron microscopy, Fourier-transform infrared (FT-IR) spectroscopy, energy-dispersive X-ray analysis, X-ray powder diffraction and UV-Vis spectroscopy. Further, the bio-potential of the synthesized AgNPs was investigated by antidiabetic (a-glucosidase assay), antioxidant (free radical scavenging assays), antibacterial (disc diffusion method) and cytotoxicity assays (cell viability against HepG2 cells). Results: FT-IR spectroscopy revealed the contribution of bioactive compounds existing in Ib1 and Ib2 extracts, in the biosynthesis and equilibrium of the AgNPs. Although the Ib2-AgNPs had a higher atomic percentage of Ag in comparison with Ib1-AgNPs, in the antidiabetic assay, the inhibition percentage of a-glucosidase was higher for AgNPs of Ib1 than Ib2, at all three concentrations examined. From the cytotoxicity results, HepG2 cancer cells were more sensitive to the Ib1-AgNPs in comparison to the Ib2-AgNPs-treated HepG2 cells. The antioxidant prospective was higher in Ib2-AgNPs than Ib1-AgNPs. Moreover, the Ib2-AgNPs showed inhibitory action against all five tested pathogenic bacteria, producing an inhibition zone of 8.74-11.52 mm while Ib1-AgNPs had an inhibitory effect on four of them, with an 8.67-11.23 (mm) inhibition zone. Conclusions: Overall, the results concluded that the Ib2-AgNPs exhibited relatively higher functional activity than Ib1-AgNPs, which might be credited to the greater abundance of bioactive compounds existing in Ib2 extract that acted as reducing as well as capping agents in the synthesis of Ib2-AgNPs. Overall, the current study highlights a novel cost-effective and eco-friendly AgNPs synthesis using food waste peels with biocompatibility and could be potentially utilized in biomedical and pharmaceutical industries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available