4.6 Article

A maze-like path generation scheme for fused deposition modeling

Journal

Publisher

SPRINGER LONDON LTD
DOI: 10.1007/s00170-019-03986-7

Keywords

Additive manufacturing; Fused deposition modeling; Path planning; Isotropy

Funding

  1. National Natural Science Foundation of China [11802082]
  2. Hebei Science and Technology Department [18391203D]
  3. Hebei University of Technology

Ask authors/readers for more resources

Additive manufacturing has the potential to provide novel solutions for fabricating complex structures. However, one of the main obstacles for such methods is the anisotropic mechanical properties of the manufactured product, which hinder the popularization of additive manufacturing in modern industries. Here, a simple yet versatile algorithm is introduced to produce isotropic products via optimizing the printing path. In this method, the workpiece is first separated into distinct areas in terms of the printing sequence, which increases the efficiency of the fabrication process. Subsequently, the printing path is schemed in each sub-region to allow a short extrusion length and low number of start-stop processes. Finally, this maze-like printing path is revised through a series of tensile tests and fracture surface analyses to validate the isotropy. Bending and indentation tests demonstrate that the samples present distinguished properties in terms of strength and isotropy in mechanical properties. Moreover, numerical and physical tests are implemented for validating the advantage of this maze-like pattern in preventing warping caused by residual stress. This work may play a significant role in printing molds that require isotropic properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available