4.5 Article

Robust expansion co-planning of electricity and natural gas infrastructures for multi energy-hub systems with high penetration of renewable energy sources

Journal

IET RENEWABLE POWER GENERATION
Volume 13, Issue 13, Pages 2287-2297

Publisher

INST ENGINEERING TECHNOLOGY-IET
DOI: 10.1049/iet-rpg.2018.6005

Keywords

load flow; renewable energy sources; linear programming; minimax techniques; integer programming; power generation planning; natural gas technology; adaptive robust expansion co-planning; electricity; natural gas infrastructures; multienergy-hub networks; wind generation; min-max-min model; mixed integer linear programming problem; final minimisation problem; two-level problem; robust expansion co-planning model; modified IEEE 118-hub test systems; multienergy-hub systems; high penetration; renewable energy sources; future energy systems; three-level model; gas-fired power plants; constraint generation algorithm; estimated load levels

Ask authors/readers for more resources

High penetration of renewable energy sources will cause crucial challenges for future energy systems. This study presents a three-level model for adaptive robust expansion co-planning of electricity and natural gas infrastructures in multi-energy-hub networks, which is robust against uncertainties of maximum production of wind generation and gas-fired power plants as well as estimated load levels. The proposed min-max-min model is formulated as a mixed integer linear programming problem. The first level minimises the investment cost of electricity and natural gas infrastructures, the worst possible case is determined through the second level, and the third level minimises the overall operation cost under that condition. To solve this model, the final minimisation problem is replaced by its Karush-Kuhn-Tucker conditions and a two-level problem is determined. Finally, by using the column and constraint generation algorithm the original problem is decomposed to master and sub-problems and the optimal solution is derived iteratively. The proposed robust expansion co-planning model is tested on modified Garver's 6-hub, modified IEEE RTS 24-hub, and modified IEEE 118-hub test systems and numerical results show its effectiveness to cope with uncertainties with regard to control conservativeness of the plan.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Green & Sustainable Science & Technology

An ultra-high voltage gain interleaved converter based on three-winding coupled inductor with reduced input current ripple for renewable energy applications

Seyed Majid Hashemzadeh, Mohammed A. Al-Hitmi, Hadi Aghaei, Vafa Marzang, Atif Iqbal, Ebrahim Babaei, Seyed Hossein Hosseini, Shirazul Islam

Summary: This article proposes an interleaved high step-up DC-DC converter topology with an ultra-high voltage conversion ratio for renewable energy applications. The converter utilizes an interleaved structure to reduce the input source current ripple, which is advantageous for solar PV sources. By employing voltage multiplier cells and coupled inductor techniques, the topology enhances the output voltage. The article provides comprehensive operation modes and steady-state analyses, compares the proposed structure with other similar converter topologies, and validates the mathematical analysis with experimental results.

IET RENEWABLE POWER GENERATION (2024)

Article Green & Sustainable Science & Technology

Resilience enhancement of distribution networks based on demand response under extreme scenarios

Gang Xu, Zixuan Guo

Summary: This paper proposes a two-stage resilience enhancement strategy for the recovery of critical loads after disasters. The first stage utilizes a heuristic algorithm to determine the post-disaster topology, while the second stage incorporates user demand response to maximize the socio-economic value of the recovery.

IET RENEWABLE POWER GENERATION (2024)

Article Green & Sustainable Science & Technology

Comparative analysis of different methods in estimating wind speed distribution, and evaluation of large-scale wind turbine performance in Rahva-Bitlis, Turkey

Faruk Oral

Summary: This study investigates the wind characteristics and electricity generation potential from wind energy in the Bitlis-Rahva region in eastern Turkey. Wind data from the Bitlis meteorological station is analyzed using the WindPRO program to determine the wind speed distribution and predict turbine performance. The results show that the region has low wind energy capacity factor, indicating it is not efficient for wind energy investments. However, it is suggested that higher altitudes in the region may have better wind energy utilization.

IET RENEWABLE POWER GENERATION (2024)

Article Green & Sustainable Science & Technology

Design and control of modular multilevel matrix converter with symmetrically integrated energy storage for low frequency AC system

Yingjie Tang, Zheren Zhang, Zheng Xu

Summary: This paper investigates the modular multilevel matrix converter with symmetrically integrated energy storage for low frequency AC system. An evaluation method for the minimum required number of active submodules is presented, and the influences of operating conditions on the minimum required number of active submodules are studied. Issues about the converter control system are also discussed in this paper.

IET RENEWABLE POWER GENERATION (2024)