4.7 Article

Organic micropollutant desorption in various water matrices - Activated carbon pore characteristics determine the reversibility of adsorption

Journal

CHEMOSPHERE
Volume 237, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2019.124415

Keywords

Activated carbon; Organic micropollutants; Desorption; Adsorption; Water treatment; Dissolved organic matter

Funding

  1. German Research Foundation (DFG) [GRK 2032/1]

Ask authors/readers for more resources

The adsorption of organic micropollutants (OMP) onto activated carbon (AC) in real waters is strongly affected by dissolved organic matter (DOM). This study examines the impact of DOM quantity and composition in terms of OMP desorption from different AC, by using four different water samples. In batch tests, an OMP concentration drop in the influent of an AC treatment system was simulated. These tests were conducted with six AC products with different internal pore structures. The tests were evaluated with respect to the extent of OMP desorption by interpreting corresponding OMP adsorption and desorption isotherms. For each tested AC and each evaluated OMP the isotherms in the different water samples were qualitatively very similar. Thus, despite different DOM composition very similar OMP desorption extents can be expected in different waters. Among the AC products a clear trend can be seen in all waters, namely that increasing pore size results in increasing desorption. The OMP desorption extent was quantified by a simple Freundlich equation-based approach, expressing the relative position of corresponding adsorption and desorption isotherms via the ratio K-F,K- Des/K-F. (Ads). Plotting K-F,K- Des/K-F, (Ads) of any given substance for the different tested AC in one water over the average AC pore size shows a linear correlation. This confirms that the OMP desorption extent in real waters is strongly impacted by the AC pore structure. Furthermore, it indicates that the average AC pore size might be a good tool to assess the vulnerability of treatment systems towards desorption. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available