4.6 Article

Internal-diffusion controlled synthesis of V2O5 hollow microspheres for superior lithium-ion full batteries

Journal

CHEMICAL ENGINEERING SCIENCE
Volume 200, Issue -, Pages 38-45

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ces.2019.01.043

Keywords

V2O5; Hollow microsphere; Hierarchical surface; Diffusion control; Lithium-ion batteries

Funding

  1. National Natural Science Foundation of China [91534202, 21838003]
  2. Basic Research Program of Shanghai [17JC1402300, 18DZ2252400]
  3. Innovation Program of Shanghai Municipal Education Commission
  4. Shanghai Scientific and Technological Innovation Project [18JC1410500]
  5. Fundamental Research Funds for the Central Universities [222201718002]

Ask authors/readers for more resources

Exploiting a simple and effective strategy to build shell-tuned hollow nanomaterials with unchanged surface microstructure is a great challenge but important for lithium-ion batteries (LIBs). Herein, we demonstrate the synthesis of V2O5 hollow microspheres, where the hierarchical shell thickness can be changed by controlling internal-diffusion rate of the core precursor. The fascinating nanostructures can guarantee the full contact with electrolyte with shortened ions diffusion path. Meantime, the self-created pores can effectively alleviate the volume change in the charge/discharge process. When evaluated as cathode materials, the V2O5 hollow microspheres can deliver a high reversible specific capacity of 287 and 140 mAh g(-1) at 1/3 C and 10 C, respectively with a good cycling stability. After inserting Li+, the corresponding Li3VO4/CNTs nanoparticles are obtained as anode materials, also exhibiting a high specific capacity of 200 mAh g(-1) even after 800 cycles at 1000 mA g(-1). An all-vanadium-based lithium-ion full battery (V2O5//Li3VO4/CNTs) is assembled, which gives a high specific capacity of 55 mAh g(-1) at 5000 mA g(-1) even after 1000 cycles based on the cathode material weight. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available