4.7 Article

Silencing Y-box binding protein-1 inhibits triple-negative breast cancer cell invasiveness via regulation of MMP1 and beta-catenin expression

Journal

CANCER LETTERS
Volume 452, Issue -, Pages 119-131

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.canlet.2019.03.014

Keywords

YB-1; Invasion; Metastasis; MMP1; Beta-catenin; Quantitative proteomics

Categories

Funding

  1. Ong Hin Tiang Scholarship in Cancer Research
  2. Ministry of Education Grant [MOE2013-T2-1-129]

Ask authors/readers for more resources

Y-box binding protein-1 (YB-1), an important transcription and translation regulator protein, is known to increase cancer cell invasiveness and spreading. Here, we report its role in breast cancer, particularly in mediating cell invasion in triple-negative breast cancer (TNBC). YB-1 stable knockdown (shYB-1) significantly reduced the invasive potential of MDA-MB-231 TNBC cells in 2D and 3D (spheroid) cultures. Whole proteome mass spectrometry analysis showed an enrichment of cell adhesion and cell to matrix interaction proteins, notably, matrix metalloproteinase-1 (MMP1) and beta-catenin (CTNNB1), which are known to play critical roles in cancer metastasis. shYB-1 cells exhibited substantial downregulation of MMP1 and CTNNB1 mRNA and protein expression, with reduced MMP1 enzyme activity. YB-1 was also observed to bind to the promoter of MMP1 and overexpression of MMP1 plasmid in shYB-1 cells increased cell invasion. Finally, analysis of tumour samples from the Gene Expression-Based Outcome for Breast Cancer Online (GOBO) database revealed that high gene expressions of YBX1, MMP1 and CTNNB1 predict for a significantly lower 10-year distant metastasis free survival. Altogether, this study shows that YB-1 mediates breast cancer invasion and metastasis via regulation of MMP1 and beta-catenin.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available