4.6 Article Proceedings Paper

CollaboNet: collaboration of deep neural networks for biomedical named entity recognition

Journal

BMC BIOINFORMATICS
Volume 20, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/s12859-019-2813-6

Keywords

NER; Deep learning; Named entity recognition; Text mining

Funding

  1. National Research Foundation of Korea [NRF-2016M3A9A7916996, NRF-2017M3C4A7065887, 2016M3A9A7916996]
  2. National IT Industry Promotion Agency - Ministry of Science and ICT
  3. Ministry of Health and Welfare [C1202-18-1001]
  4. National Research Foundation of Korea [2016M3A9A7916996] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

BackgroundFinding biomedical named entities is one of the most essential tasks in biomedical text mining. Recently, deep learning-based approaches have been applied to biomedical named entity recognition (BioNER) and showed promising results. However, as deep learning approaches need an abundant amount of training data, a lack of data can hinder performance. BioNER datasets are scarce resources and each dataset covers only a small subset of entity types. Furthermore, many bio entities are polysemous, which is one of the major obstacles in named entity recognition.ResultsTo address the lack of data and the entity type misclassification problem, we propose CollaboNet which utilizes a combination of multiple NER models. In CollaboNet, models trained on a different dataset are connected to each other so that a target model obtains information from other collaborator models to reduce false positives. Every model is an expert on their target entity type and takes turns serving as a target and a collaborator model during training time. The experimental results show that CollaboNet can be used to greatly reduce the number of false positives and misclassified entities including polysemous words. CollaboNet achieved state-of-the-art performance in terms of precision, recall and F1 score.ConclusionsWe demonstrated the benefits of combining multiple models for BioNER. Our model has successfully reduced the number of misclassified entities and improved the performance by leveraging multiple datasets annotated for different entity types. Given the state-of-the-art performance of our model, we believe that CollaboNet can improve the accuracy of downstream biomedical text mining applications such as bio-entity relation extraction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available