4.7 Article Proceedings Paper

Locality-sensitive hashing for the edit distance

Journal

BIOINFORMATICS
Volume 35, Issue 14, Pages I127-I135

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/bioinformatics/btz354

Keywords

-

Funding

  1. Gordon and Betty Moore Foundation's Data-Driven Discovery Initiative [GBMF4554]
  2. US National Institutes of Health [R01GM122935]
  3. Shurl and Kay Curci Foundation
  4. generosity of Eric and Wendy Schmidt by recommendation of the Schmidt Futures program

Ask authors/readers for more resources

Motivation Sequence alignment is a central operation in bioinformatics pipeline and, despite many improvements, remains a computationally challenging problem. Locality-sensitive hashing (LSH) is one method used to estimate the likelihood of two sequences to have a proper alignment. Using an LSH, it is possible to separate, with high probability and relatively low computation, the pairs of sequences that do not have high-quality alignment from those that may. Therefore, an LSH reduces the overall computational requirement while not introducing many false negatives (i.e. omitting to report a valid alignment). However, current LSH methods treat sequences as a bag of k-mers and do not take into account the relative ordering of k-mers in sequences. In addition, due to the lack of a practical LSH method for edit distance, in practice, LSH methods for Jaccard similarity or Hamming similarity are used as a proxy. Results We present an LSH method, called Order Min Hash (OMH), for the edit distance. This method is a refinement of the minHash LSH used to approximate the Jaccard similarity, in that OMH is sensitive not only to the k-mer contents of the sequences but also to the relative order of the k-mers in the sequences. We present theoretical guarantees of the OMH as a gapped LSH. Availability and implementation The code to generate the results is available at http://github.com/Kingsford-Group/omhismb2019. Supplementary information Supplementary data are available at Bioinformatics online.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available