4.7 Article

Keratinocyte electrotaxis induced by physiological pulsed direct current electric fields

Journal

BIOELECTROCHEMISTRY
Volume 127, Issue -, Pages 113-124

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.bioelechem.2019.02.001

Keywords

Electrotaxis; Pulsed electric field; Constant electric field; Keratinocyte; Wound healing; ERK

Funding

  1. National Natural Science Foundation of China [81873936]

Ask authors/readers for more resources

Endogenous electric fields (EFs) direct the migration (electrotaxis) of keratinocytes in skin wounds, and the exogenous application of EFs may therefore improve wound healing, but the potential benefits are limited by the side effects of constant direct current (DC) passing through tissues. In contrast, with pulsed DC (characterized by intermittent output), parameters can be adjusted to minimize the adverse effects of electric currents. However, it remains unknown whether pulsed DC can reliably induce keratinocyte electrotaxis, In this study, using primary keratinocytes in an electrotaxis chamber, we found that a pulsed DCEF at physiological strength (EF = 150 mV/mm, duty cycle = 60%, frequency = 0.1 Hz) could induce robust electrotaxis. This effect was dependent on both voltage and duty cycle, but not on frequency. As predicted, fewer electrochemical reactions and cytotoxic reactions were detected with pulsed DCEF than with constant DCEF. In summary, we here demonstrate for the first time, that pulsed DCEF can trigger keratinocyte electrotaxis comparable to that induced by constant DCEF, while minimizing the electrochemical side effects. These findings support the future development of a pulsed DCEF device to improve wound healing in human patients. (C) 2019 Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Dermatology

Requirement of Gαi1/3-Gab1 Signaling Complex for Keratinocyte Growth Factor-Induced PI3K-AKT-mTORC1 Activation

Yi-ming Zhang, Zhi-qing Zhang, Yuan-yuan Lu, Xin Zhou, Xiao-hua Shi, Qin Jiang, Dong-li Fan, Cong Cao

JOURNAL OF INVESTIGATIVE DERMATOLOGY (2015)

Article Nanoscience & Nanotechnology

Biofunctionalization of silicone rubber with microgroove-patterned surface and carbon-ion implantation to enhance biocompatibility and reduce capsule formation

Ze-yuan Lei, Ting Liu, Wei-juan Li, Xiao-hua Shi, Dong-li Fan

INTERNATIONAL JOURNAL OF NANOMEDICINE (2016)

Article Surgery

Carbon Ion Implantation: A Good Method to Enhance the Biocompatibility of Silicone Rubber

Xin Zhou, Xing Chen, Tong-cun Mao, Xiang Li, Xiao-hua Shi, Dong-li Fan, Yi-ming Zhang

PLASTIC AND RECONSTRUCTIVE SURGERY (2016)

Review Surgery

Complications from Nasolabial Fold Injection of Calcium Hydroxylapatite for Facial Soft-Tissue Augmentation: A Systematic Review and Meta-Analysis

Xiao-hua Shi, Xin Zhou, Yi-ming Zhang, Ze-yuan Lei, Ting Liu, Dong-li Fan

AESTHETIC SURGERY JOURNAL (2016)

Article Dermatology

MAP4 regulates Tctex-1 and promotes the migration of epidermal cells in hypoxia

Xin Chen, Xin Zhou, Xiaohua Shi, Xin Xia, Yiming Zhang, Dongli Fan

EXPERIMENTAL DERMATOLOGY (2018)

Article Surgery

In Vivo and In Vitro Fibroblasts' Behavior and Capsular Formation in Correlation with Smooth and Textured Silicone Surfaces

Shu-qing Huang, Yao Chen, Qiong Zhu, Yi-ming Zhang, Ze-yuan Lei, Xin Zhou, Dong-li Fan

Summary: This study investigated the effects of different surface textures of silicone breast implants on the behaviors of fibroblasts and capsular formation. The results showed that as surface roughness increased, the adhesion and cell spreading of fibroblasts decreased, while the proliferation of fibroblasts and capsule thickness increased. The number of myofibroblasts may have a more significant influence on the process of contracture than capsule thickness in the early stage of capsular formation.

AESTHETIC PLASTIC SURGERY (2022)

Article Cell & Tissue Engineering

c-Casitas b-Lineage Lymphoma Downregulation Improves the Ability of Long-term Cultured Mesenchymal Stem Cells for Promoting Angiogenesis and Diabetic Wound Healing

Chengcheng Shen, Yuangang Lu, Jianghe Zhang, Yujie Li, Yiming Zhang, Dongli Fan

Summary: The study demonstrated that downregulation of c-Cbl could attenuate the impairment of proangiogenic functions in MSCs induced by long-term culture in vitro, thereby improving the effect of long-term cultured MSCs in promoting diabetic wound healing.

CELL TRANSPLANTATION (2021)

Article Biochemistry & Molecular Biology

Clinical validation of electrochemical biosensor for the detection of methylglyoxal in subjects with type-2 diabetes mellitus

Priyanga Kumar, Noel Nesakumar, Jayashree Gopal, Sakthivel Sivasubramanian, Srinivasan Vedantham, John Bosco Balaguru Rayappan

Summary: This study developed an electrochemical biosensor for measuring MG levels in the plasma of type-2 diabetes mellitus patients. The biosensor showed a wide linear concentration range, high sensitivity, and a 90% correlation with ELISA data. It also exhibited a significant correlation with HbA1c and fasting plasma glucose levels.

BIOELECTROCHEMISTRY (2024)

Article Biochemistry & Molecular Biology

A disposable immunosensor for the detection of salivary MMP-8 as biomarker of periodontitis

Cristina Tortolini, Valeria Gigli, Antonio Angeloni, Federico Tasca, Nguyen T. K. Thanh, Riccarda Antiochia

Summary: The development of a novel voltammetric immunosensor for the detection of salivary MMP-8 at the point-of-care is described. The sensor showed good performance and comparable results to the conventional ELISA method when tested in real saliva samples. This biosensor is single-use, cost-effective, and requires a small quantity of test medium and a short preparation time.

BIOELECTROCHEMISTRY (2024)

Article Biochemistry & Molecular Biology

Electrocatalytic aptasensor for bacterial detection exploiting ferricyanide reduction by methylene blue on mixed PEG/aptamer monolayers

Rimsha B. Jamal, Ulrich Bay Gosewinkel, Elena E. Ferapontova

Summary: Pathogen-triggered infections are a severe global threat to human health. Researchers have developed a fast and inexpensive electrocatalytic aptamer assay for the specific and ultrasensitive detection of E. coli, allowing for timely treatment and prevention. The method is fast, sensitive, and can be used in field and point-of-care applications for analysis of bacteria in the human environment.

BIOELECTROCHEMISTRY (2024)

Article Biochemistry & Molecular Biology

A ratiometric molecular imprinted electrochemiluminescence sensor based on enhanced luminescence of CdSe@ZnS quantum dots by MXene@NaAsc for detecting uric acid

Miao Liu, Yuwei Wang, Shanshan Tang, Wei Wang, Axin Liang, Aiqin Luo

Summary: An unlabeled ratiometric molecular imprinted electrochemiluminescence sensor was developed for the determination of trace uric acid using MXene@NaAsc, CdSe@ZnS quantum dots, and molecularly imprinted polymer composites modified glass carbon electrode. This sensor, with easy preparation, great selectivity, and excellent sensitivity, successfully detected uric acid in human serum.

BIOELECTROCHEMISTRY (2024)

Article Biochemistry & Molecular Biology

Bacterial eradication by a low-energy pulsed electron beam generator

Charlotte Da Silva, Camille Lamarche, Carole Pichereaux, Emmanuelle Mouton-Barbosa, Gauthier Demol, Sebastien Boisne, Etienne Dague, Odile Burlet-Schiltz, Flavien Pillet, Marie-Pierre Rols

Summary: Low-energy electron beams (LEEB) are a safe and practical sterilization solution for industrial applications. To address the limitations of LEEB, we developed a low-energy pulsed electron beam generator (LEPEB) that can effectively and efficiently eradicate bacteria in a wide range of industrial applications.

BIOELECTROCHEMISTRY (2024)

Article Biochemistry & Molecular Biology

N-methyl mesoporphyrin IX (NMM) as electrochemical probe for detection of guanine quadruplexes

Daniel Dobrovodsky, Ales Danhel, Daniel Renciuk, Jean-Louis Mergny, Miroslav Fojta

Summary: In this study, N-methyl mesoporphyrin IX (NMM) was utilized as a voltammetric probe for the electrochemical detection of G4s. The detection of NMM was achieved by cyclic voltammetry on a hanging mercury drop electrode (HMDE) with a limit of detection (LOD) of 40 nM. The reduction signal of NMM was found to be significantly higher when G4 oligodeoxynucleotides (G4 ODNs) were present compared to single- or double-stranded ODNs or unfolded ODNs capable of forming G4s. Gradual transition from unstructured single strand to G4, induced by increasing concentrations of the G4 stabilizing K+ ions, was detected for the first time using electrochemical methods. Circular dichroism spectroscopy provided support for the obtained results. This work expands on the utilization of electrochemical probes for DNA secondary structure recognition and offers a proof of principle for the development of novel electroanalytical methods for nucleic acid structure studies.

BIOELECTROCHEMISTRY (2024)

Article Biochemistry & Molecular Biology

Facile construction of nanocubic Mn3[Fe(CN)6]2@Pt based electrochemical DNA sensors for ultrafast precise determination of SARS-CoV-2

Mengjiao Zhu, Yu Liu, Meiyue Wang, Tao Liu, Zhenyu Chu, Wanqin Jin

Summary: Early rapid diagnosis of COVID-19 is crucial for reducing the risk of severe symptoms and loss of lung function. Researchers have proposed an ultrafast and ultrasensitive DNA sensor that can accurately detect the virus in a short period of time, with outstanding selectivity.

BIOELECTROCHEMISTRY (2024)

Article Biochemistry & Molecular Biology

Development of bioanodes rich in exoelectrogenic bacteria using iron-rich palaeomarine sediment inoculum

Fatima-Zahra Ait-Itto, James A. Behan, Mathieu Martinez, Frederic Barriere

Summary: This study investigated the feasibility of using ancient marine sediments as inoculum for bioanode development in microbial fuel cells (MFC). The results showed the presence of two exoelectrogenic bacterial genera in these iron-rich sediments and confirmed that the development of the bioanode derived from the native microbiota. This study has important implications for understanding the role of these bacteria in broader paleoenvironmental phenomena.

BIOELECTROCHEMISTRY (2024)

Article Biochemistry & Molecular Biology

Paper-based electrodes as a tool for detecting ligninolytic enzymatic activities

Issa Fall, Bastien Doumeche, Sofiene Abdellaoui, Caroline Remond, Harivony Rakotoarivonina, Marjorie Ochs

Summary: This article presents a novel electrochemical tool based on lignin-coated paper electrodes for the detection and characterization of ligninolytic activity. The suitability of this method has been demonstrated using a catalaseperoxidase isolated from Thermobacillus xylanilyticus.

BIOELECTROCHEMISTRY (2024)

Article Biochemistry & Molecular Biology

Proximity hybridization induced bipedal DNA walker and rolling circle amplification for label-free electrochemical detection of apolipoprotein A4

Chenyi Zhuo, Dehong Yu, Jiuying Cui, Zichun Song, Qianli Tang, Xianjiu Liao, Zhao Liu, Ning Xin, Lu Lou, Fenglei Gao

Summary: A label-free detection strategy for quantification of Apolipoprotein A4 (Apo-A4) has been developed based on rolling circle amplification (RCA) and proximity hybridization-induced DNAzyme-driven bipedal DNA walker. This method shows high sensitivity and selectivity for a wide range of protein targets.

BIOELECTROCHEMISTRY (2024)

Article Biochemistry & Molecular Biology

Polyethylene glycol hydrogel coatings for protection of electroactive bacteria against chemical shocks

Niloufar Fattahi, Jeffrey Reed, Evan Heronemus, Priyasha Fernando, Ryan Hansen, Prathap Parameswaran

Summary: In this study, polyethylene glycol hydrogels were developed as protective coatings for electroactive biofilms, improving their viability under low resource conditions and ammonia-N shocks.

BIOELECTROCHEMISTRY (2024)

Article Biochemistry & Molecular Biology

Self-cleaning paper-based microfluidic biosensor employing DNAzyme and semiconducting single-walled carbon nanotube for copper ion detection

Xiaopeng Hou, Qiongyi Cheng, Hui Wang

Summary: A self-cleaning paper-based microfluidic biosensor was developed using hydrophobic paper decorated with polymeric octadecyl trichlorosilane. The biosensor showed improved performance and could effectively measure the concentration of copper ions in livestock feed and manure.

BIOELECTROCHEMISTRY (2024)

Article Biochemistry & Molecular Biology

Magnetically induced self-assembly electrochemical biosensor with ultra-low detection limit and extended measuring range for sensitive detection of HER2 protein

Yanling Zhang, Jie Wang, Min Liu, Yun Ni, Yao Yue, Dawei He, Ruijiang Liu

Summary: An innovative electrochemical biosensor has been developed for sensitive detection of HER2 protein, an important tumor marker for breast cancer diagnosis and treatment evaluation. The biosensor utilizes specific recognition probes and nanomaterials, along with a unique sensing strategy, to achieve ultra-low detection limit and demonstrate excellent selectivity, reproducibility, and stability.

BIOELECTROCHEMISTRY (2024)

Article Biochemistry & Molecular Biology

Nitrogen-enhanced carbon quantum dots mediated immunosensor for electrochemical detection of HER2 breast cancer biomarker

Humayun Amir, Vasanth Subramanian, Sundaram Sornambikai, Nagamony Ponpandian, Chinnusamy Viswanathan

Summary: In this study, the electrochemical detection of breast cancer biomarker HER2 was successfully achieved using the N-CQDs/GS as the detector. The BSA-modified HER2 Antibody/N-CQDs/GS immunoelectrode preserved excellent activity for the biosensor, while the GS electrode provided high stability and conductivity. The method exhibited a low detection limit and optimal specificity, stability, and reproducibility for detecting HER-2 protein in untreated blood samples from breast cancer patients.

BIOELECTROCHEMISTRY (2024)

Article Biochemistry & Molecular Biology

Polypyrrole-based structures for activation of cellular functions under electrical stimulation

Ilona Uzieliene, Anton Popov, Raminta Vaiciuleviciute, Gailute Kirdaite, Eiva Bernotiene, Almira Ramanaviciene

Summary: This review discusses the application of polypyrrole (Ppy), an electroconductive polymer, in cell culture experiments with electrical stimulation (ES) and its potential for tissue regeneration. Ppy can direct ES to cells and stimulate differentiation towards different cell lineages. Different types of Ppy materials and their combination with active molecules are explored.

BIOELECTROCHEMISTRY (2024)