4.8 Article

Role of charge-reversal in the hemo/immuno-compatibility of polycationic gene delivery systems

Journal

ACTA BIOMATERIALIA
Volume 96, Issue -, Pages 436-455

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2019.06.043

Keywords

Charge reversal; Polycationic gene vector; Hemocompatibility; Blood coagulation; Immune inflammatory response

Funding

  1. National Natural Science Foundation of China [81701808, 31870943]

Ask authors/readers for more resources

As an effective and well-recognized strategy used in many delivery systems, such as polycation gene vectors, charge reversal refers to the alternation of vector surface charge from negative (in blood circulation) to positive (in the targeted tissue) in response to specific stimuli to simultaneously satisfy the requirements of biocompatibility and targeting. Although charge reversal vectors are intended to avoid interactions with blood in their application, no overall or systematic investigation has been carried out to verify the role of charge reversal in the blood compatibility. Herein, we comprehensively mapped the effects of a typical charge-reversible polycation gene vector based on pH-responsive 2,3-dimethylmaleic anhydride (DMMA)-modified polyethylenimine (PEI)/pDNA complex in terms of blood components, coagulation function, and immune response as compared to conventional PEGylated modification. The in vitro and in vivo results displayed that charge-reversal modification significantly improves the PEI/pDNA-induced abnormal effect on vascular endothelial cells, platelet activation, clotting factor activity, fibrinogen polymerization, blood coagulation process, and pro-inflammatory cytokine expression. Unexpectedly, (PEI/pDNA)-DMMA induced the cytoskeleton impairment-mediated erythrocyte morphological alternation and complement activation even more than PEI/pDNA. Further, transcriptome sequencing demonstrated that the overexpression of pro-inflammatory cytokines was correlated with vector-induced differentially expressed gene number and mediated by inflammation-related signaling pathways (MAPK, NF-kappa B, Toll-like receptor, and JAK-STAT) activation. By comparison, charge-reversal modification improved the hemocompatibility to a greater extent than dose PEGylation except for erythrocyte rupture. Nevertheless, it is inferior to mPEG modification in terms of immunocompatibility. These findings provide comprehensive insights to understand the molecular mechanisms of the effects of charge reversal on blood components and their function and to provide valuable information for its potential applications from laboratory to clinic. Statement of Significance The seemingly revolutionary charge reversal strategy has been believed to possess stealth character with negative charge eluding interaction with blood components during circulation. However to date, no overall or systematic investigation has been carried out to verify the role of charge-reversal on the blood/immune compatibility, which impede their development from laboratory to bedside. Therefore, we comprehensively mapped the effects of a typical charge-reversible polycationic gene vector on blood components (vascular endothelial cell, platelet, clotting factors, fibrinogen, RBCs and coagulation function) and immune response (complement and pro-inflammatory cytokines) at cellular and molecular level in comparison to PEGylation modification. These findings help to elucidate the molecular mechanisms for the effects of charge-reversal on blood components and functions, and provide valuable information for the possible application in clinical settings. (C) 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available