4.8 Article

Highly Active Pt3Sn{110}-Excavated Nanocube Cocatalysts for Photocatalytic Hydrogen Production

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 11, Issue 29, Pages 25844-25853

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.9b05572

Keywords

photocatalysis; hydrogen production; cocatalysts; Pt3Sn nanocubes; DFT

Funding

  1. National Natural Science Foundation of China [21673137, 21103106, 21107069]
  2. Shanghai Natural Science Foundation [19ZR1420200]
  3. Science and Technology Commission of Shanghai Municipality [16ZR1413900, 14DZ2261000]
  4. Shanghai Committee of science and Technology [17DZ2282800]
  5. Scientific Data and Computing Center, a component of the Computational Science Initiative, at Brookhaven National Laboratory [DE-SC0012704]

Ask authors/readers for more resources

In photocatalytic hydrogen production via water splitting, noble metal alloy nanoparticles exposed to specific crystal facets can be highly effective cocatalysts in comparison with noble metal nanospherical particles. In this research, we have investigated, for the first time, the {11O} facet-dependent efficiency of a Pt3Sn nanocube cocatalyst for solar photocatalytic hydrogen production. Under identical conditions and with the same cocatalyst loading, the hydrogen production rate over excavated {110} facet-exposed Pt3Sn nanocubes/CdS is 2 times higher than that of {100} facet-exposed Pt3Sn nanocubes/CdS and 3.5 times higher than that of {100} facet-exposed Pt nanocubes/CdS. The quantum efficiency of photocatalytic hydrogen production over the {110} facet-exposed Pt3Sn nanocubes/CdS can be as high as 86% at 420 nm, exceeding the previously reported efficiencies. Theoretical computations and experimental characterizations have revealed that excavated Pt3Sn nanocubes exposed to high-energy {110} crystal facets are more favorable for hydrogen evolution reactions than other cocatalysts studied, leading to excellent photocatalytic performance. Tuning the exposed facets of a metal cocatalyst can greatly promote its photocatalytic activity. This work provides an alternative strategy for synthesizing highly active photocatalysts for water splitting/reducing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available