4.4 Article

Effects of critical geometric parameters on the optical performance of a conical cavity receiver

Journal

FRONTIERS IN ENERGY
Volume 13, Issue 4, Pages 673-683

Publisher

HIGHER EDUCATION PRESS
DOI: 10.1007/s11708-019-0630-2

Keywords

parabolic collector; conical cavity receiver; critical geometric parameters; optical performance

Categories

Ask authors/readers for more resources

The optical performance of a receiver has a great influence on the efficiency and stability of a solar thermal power system. Most of the literature focuses on the optical performance of receivers with different geometric shapes, but less research is conducted on the effects of critical geometric parameters. In this paper, the commercial software TracePro was used to investigate the effects of some factors on a conical cavity receiver, such as the conical angle, the number of loops of the helical tube, and the distance between the focal point of the collector and the aperture. These factors affect the optical efficiency, the maximum heat flux density, and the light distribution in the conical cavity. The optical performance of the conical receiver was studied and analyzed using the Monte Carlo ray tracing method. To make a reliable simulation, the helical tube was attached to the inner wall of the cavity in the proposed model. The results showed that the amount of light rays reaching the helical tube increases with the increasing of the conical angle, while the optical efficiency decreases and the maximum heat flux density increases. The increase in the number of loops contributed to an increase in the optical efficiency and a uniform light distribution. The conical cavity receiver had an optimal optical performance when the focal point of the collector was near the aperture.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available