4.6 Article

Conditions for transient epidemics of waterborne disease in spatially explicit systems

Journal

ROYAL SOCIETY OPEN SCIENCE
Volume 6, Issue 5, Pages -

Publisher

ROYAL SOC
DOI: 10.1098/rsos.181517

Keywords

waterborne disease transmission; spatially explicit system; multi-layer network; reactivity; generalized stability theory

Funding

  1. Politecnico di Milano
  2. Politecnico di Milano through the Polisocial Award programme, project MASTR-SLS
  3. ERC [RINEC 22761]
  4. Swiss National Science Foundation project 'Optimal control of intervention strategies for waterborne disease epidemics' (SNSF) [200021_172578]

Ask authors/readers for more resources

Waterborne diseases are a diverse family of infections transmitted through ingestion of-or contact with-water infested with pathogens. Outbreaks of waterborne infections often show well-defined spatial signatures that are typically linked to local eco-epidemiological conditions, water-mediated pathogen transport and human mobility. In this work, we apply a spatially explicit network model describing the transmission cycle of waterborne pathogens to determine invasion conditions in metacommunities endowed with a realistic spatial structure. Specifically, we aim to define conditions under which pathogens can temporarily colonize a set of human communities, thus triggering a transient epidemic outbreak. To that end, we apply generalized reactivity analysis, a recently developed methodological framework for the study of transient dynamics in ecological systems subject to external perturbations. The study of pathogen invasion is complemented by the detection of the spatial signatures associated with the perturbations to a disease-free system that are expected to be amplified the most over different time scales. Understanding the drivers of waterborne disease dynamics over time scales that are relevant to epidemic and/or endemic transmission is a crucial, cross-disciplinary challenge, as large portions of the developing world still struggle to cope with the burden of these infections.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available