4.6 Article

Environmentally responsive dual-targeting nanotheranostics for overcoming cancer multidrug resistance

Journal

SCIENCE BULLETIN
Volume 64, Issue 10, Pages 705-714

Publisher

ELSEVIER
DOI: 10.1016/j.scib.2019.04.019

Keywords

Cancer chemosensitization; Multidrug resistance; P-glycoprotein; pH-responsive; Magnetic resonance imaging

Funding

  1. National Basic Research Development Program of China [2017YFA0205201, 2018YFA0107301]
  2. National Natural Science Foundation of China [81422023, 81871404, 81603015, U1705281, U1505221]
  3. Fundamental Research Funds for the Central Universities [20720160065, 20720150141]
  4. Program for New Century Excellent Talents in University, China [NCET-13-0502]

Ask authors/readers for more resources

The development of multiple drug resistance (MDR) to chemotherapy and subsequent treatment failures are major obstacles in cancer therapy. An attractive option for combating MDR is inhibiting the expression of P-glycoprotein (P-gp) in tumor cells. Here, we report a novel chemosensitizing agent, XMD8-92, which can down-regulate P-gp. To enhance the specificity of MDR chemotherapy, a promising nanotheranostic micelle system based on poly(ethylene glycol)-blocked-poly(L-leucine) (PEG-b-Leu) was developed to simultaneously carry the anticancer drug doxorubicin, chemosensitizing agent XMD8-92, and superparamagnetic iron oxide nanoparticles (SPIOs). Featured with MDR environmentally responsive dual-targeting capability, controllable drug delivery, and efficient magnetic resonance (MR) imaging characteristics, the prepared nanotheranostics (DXS@NPs) showed outstanding in vitro cytotoxicity on MDR cells (SCG 7901/VCR) with only 53% of cells surviving compared to 90% of DOX-treated cells. Furthermore, efficient tumor inhibition and highly reduced systemic toxicity were exhibited by MDR tumor-bearing mice treated with DXS@NPs. Overall, the environmentally responsive dual-targeting nanotheranostics represent a promising approach for overcoming cancer MDR. (C) 2019 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available