4.6 Article

Phylogenetically Structured Differences in rRNA Gene Sequence Variation among Species of Arbuscular Mycorrhizal Fungi and Their Implications for Sequence Clustering

Journal

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
Volume 82, Issue 16, Pages 4921-4930

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.00816-16

Keywords

-

Funding

  1. Strategic Environmental Research and Development Program (SERDP) [RC-2330]
  2. National Science Foundation (NSF) [DEB-0616891, DEB-0919434, ACI-1443054]

Ask authors/readers for more resources

Arbuscular mycorrhizal (AM) fungi form mutualisms with plant roots that increase plant growth and shape plant communities. Each AM fungal cell contains a large amount of genetic diversity, but it is unclear if this diversity varies across evolutionary lineages. We found that sequence variation in the nuclear large-subunit (LSU) rRNA gene from 29 isolates representing 21 AM fungal species generally assorted into genus-and species-level clades, with the exception of species of the genera Claroideoglomus and Entrophospora. However, there were significant differences in the levels of sequence variation across the phylogeny and between genera, indicating that it is an evolutionarily constrained trait in AM fungi. These consistent patterns of sequence variation across both phylogenetic and taxonomic groups pose challenges to interpreting operational taxonomic units (OTUs) as approximations of species-level groups of AM fungi. We demonstrate that the OTUs produced by five sequence clustering methods using 97% or equivalent sequence similarity thresholds failed to match the expected species of AM fungi, although OTUs from AbundantOTU, CD-HIT-OTU, and CROP corresponded better to species than did OTUs from mothur or UPARSE. This lack of OTU-to-species correspondence resulted both from sequences of one species being split into multiple OTUs and from sequences of multiple species being lumped into the same OTU. The OTU richness therefore will not reliably correspond to the AM fungal species richness in environmental samples. Conservatively, this error can overestimate species richness by 4-fold or underestimate richness by one-half, and the direction of this error will depend on the genera represented in the sample. IMPORTANCE Arbuscular mycorrhizal (AM) fungi form important mutualisms with the roots of most plant species. Individual AM fungi are genetically diverse, but it is unclear whether the level of this diversity differs among evolutionary lineages. We found that the amount of sequence variation in an rRNA gene that is commonly used to identify AM fungal species varied significantly between evolutionary groups that correspond to different genera, with the exception of two genera that are genetically indistinguishable from each other. When we clustered groups of similar sequences into operational taxonomic units (OTUs) using five different clustering methods, these patterns of sequence variation caused the number of OTUs to either over-or underestimate the actual number of AM fungal species, depending on the genus. Our results indicate that OTU-based inferences about AM fungal species composition from environmental sequences can be improved if they take these taxonomically structured patterns of sequence variation into account.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Mycology

Phylogenetic and chemotypic diversity of Periglandula species in eight new morning glory hosts (Convolvulaceae)

Wesley T. Beaulieu, Daniel G. Panaccione, Katy L. Ryan, Wittaya Kaonongbua, Keith Clay

MYCOLOGIA (2015)

Article Multidisciplinary Sciences

MycoDB, a global database of plant response to mycorrhizal fungi

V. Bala Chaudhary, Megan A. Rua, Anita Antoninka, James D. Bever, Jeffery Cannon, Ashley Craig, Jessica Duchicela, Alicia Frame, Monique Gardes, Catherine Gehring, Michelle Ha, Miranda Hart, Jacob Hopkins, Baoming Ji, Nancy Collins Johnson, Wittaya Kaonongbua, Justine Karst, Roger T. Koide, Louis J. Lamit, James Meadow, Brook G. Milligan, John C. Moore, Thomas H. Pendergast, Bridget Piculell, Blake Ramsby, Suzanne Simard, Shubha Shrestha, James Umbanhowar, Wolfgang Viechtbauer, Lawrence Walters, Gail W. T. Wilson, Peter C. Zee, Jason D. Hoeksema

SCIENTIFIC DATA (2016)

Article Mycology

Glomus candidum, a new species of arbuscular mycorrhizal fungi from North American grassland

Eduardo Furrazola, Ricardo Herrera-Peraza, Wittaya Kaonongbua, James D. Bever

MYCOTAXON (2010)

Article Plant Sciences

Non-native plants and soil microbes: potential contributors to the consistent reduction in soil aggregate stability caused by the disturbance of North American grasslands

Jessica Duchicela, Keith M. Vogelsang, Peggy A. Schultz, Wittaya Kaonongbua, Elizabeth L. Middleton, James D. Bever

NEW PHYTOLOGIST (2012)

Correction Biology

Evolutionary history of plant hosts and fungal symbionts predicts the strength of mycorrhizal mutualism (vol 1, 116, 2018)

Jason D. Hoeksema, James D. Bever, Sounak Chakraborty, V. Bala Chaudhary, Monique Gardes, Catherine A. Gehring, Miranda M. Hart, Elizabeth Ann Housworth, Wittaya Kaonongbua, John N. Klironomos, Marc J. Lajeunesse, James Meadow, Brook G. Milligan, Bridget J. Piculell, Anne Pringle, Megan A. Rua, James Umbanhowar, Wolfgang Viechtbauer, Yen-Wen Wang, Gail W. T. Wilson, Peter C. Zee

COMMUNICATIONS BIOLOGY (2018)

Proceedings Paper Engineering, Environmental

Preliminary study on biodiversity of arbuscular mycorrhizal fungi (AMF) in oil palm (Elaeis guineensis Jacq.) plantations in Thailand

Auliana, W. Kaonongbua

1ST INTERNATIONAL CONFERENCE ON TROPICAL STUDIES AND ITS APPLICATION (ICTROPS) (2018)

No Data Available