4.5 Article

Enhanced Interfacial Charge Transfer and Separation Rate based on Sub 10 nm MoS2 Nanoflakes In Situ Grown on Graphitic-C3N4

Journal

ADVANCED MATERIALS INTERFACES
Volume 6, Issue 13, Pages -

Publisher

WILEY
DOI: 10.1002/admi.201900554

Keywords

g-C3N4; MoS2; photocatalyst; photodegradation; synergistic effect

Funding

  1. National Natural Science Foundation of China [21273010]
  2. Program for Natural Science of Henan Province [162300410004]
  3. Key Scientific Research Projects of Henan Universities [19A150014]
  4. Anyang Normal University College Student Innovation Fund Project [ASCX/2018-Z044]
  5. China Scholarship Council (CSC) [201808260016]
  6. National Research Foundation of Korea [2014M3A7B4052201, 2017R1D1A1B03034847]
  7. National Research Foundation of Korea [2017R1D1A1B03034847] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Herein, sub 10 nm MoS2 nanoflakes are successfully in situ grown on graphitic-carbon-nitride (MoS2/g-C3N4) through a hydrothermal strategy. The scanning electron microscopy result indicates that the thickness of the MoS2 nanoflakes is less than 10 nm, which can boost the transport rate of the photoproduced charge during the photodegradation process. Transmission electron microscopy result clearly shows that an excellent interfacial heterojunction is formed between g-C3N4 and MoS2, which will significantly improve the stability of catalysts. Particularly, the optimal 8% MoS2/g-C3N4 product displays significantly enhance catalytic performance and excellent long-term photodurability. These superior photocatalytic properties are attributed to the excellent interfacial heterostructure between MoS2 and g-C3N4, which extends the visible light absorption range, suppresses the recombination, and improves the transfer rate of photoproduced charge.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available