4.6 Article

Ecofriendly Long Life Nanocomposite Sensors for Determination of Carbachol in Presence of Choline: Application in Ophthalmic Solutions and Biological Fluids

Journal

SENSORS
Volume 19, Issue 10, Pages -

Publisher

MDPI
DOI: 10.3390/s19102357

Keywords

graphene; carbachol; sensor; nanocomposites; ecofriendly

Ask authors/readers for more resources

Several emerging nano scale forms of carbon are showing great promise in electrochemical sensing such as graphene and multi-walled carbon nanotubes (MWCNTs). Herein we present an ecofriendly method to fabricate long life and sensitive ion selective sensors based on graphene and MWCNTs nanocomposites with no need for volatile organic solvents. Both sensors were fabricated, for the analysis of carbachol in ophthalmic solutions, plasma and urine where ion- association complex was formed between cationic carbachol and anionic Sodium tetra phenyl borate (NaTBP) in a ratio 1:1. Both sensors were evaluated according to the IUPAC recommendation data, revealing linear response in the concentration range 10(-7) M to 10(-2) M with near Nernstian slopes 50.80 +/- 5 and 58.14 +/- 3 mV/decade and correlation coefficients 0.9992 and 0.9998 for graphene and MWCNTs based sensors, respectively. Both sensors were successfully applied as stability indicating method for the analysis of carbachol in presence of its metabolite choline, in ophthalmic preparations, in plasma and urine showing good recovery percentage values. MWCNTs based sensor showed some advantages over graphene sensor regarding lower limit of detection (LOD), longer life time and higher selectivity towards carbachol. Statistical comparison of the proposed sensors with the official method showed no significant difference for accuracy and precision.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available