4.1 Article

METAL COMPLEXES AS NEW PRO-ECOLOGICAL CROSSLINKING AGENTS FOR CHLOROPRENE RUBBER BASED ON HECK COUPLING REACTION

Journal

RUBBER CHEMISTRY AND TECHNOLOGY
Volume 92, Issue 3, Pages 589-597

Publisher

AMER CHEMICAL SOC INC
DOI: 10.5254/rct.19.81465

Keywords

-

Funding

  1. Young Scientists' Fund at the Faculty of Chemistry, Lodz University of Technology [W3D/FMN/34G/2016]

Ask authors/readers for more resources

The influence of new pro-ecological curing agents on the crosslinking process of chloroprene rubber (CR) was examined. The proposed curing system used a simpler recipe (no need to apply harmful products such as zinc oxide and ethylene thiourea) and cost less than standard metal oxides. It was expected that the mechanism of crosslinking would be similar to that of Heck-type reactions. Heck-type reactions are powerful tools for the creation of new C=C bonds. They provide the simplest and most efficient way to synthesize a variety of important compounds used in many areas, such as pharmaceuticals, antioxidants, ultraviolet absorbers, and industrial applications. However, despite their wide application, Heck-type reactions have not been used in the rubber industry so far. Rubber blends containing acetylacetonates with different transition metals as new crosslinking agents were filled with fumed silica Aerosil 380 or carbon black Corax N-550. It was found that metal complexes are active crosslinking agents of the CR composites. The obtained vulcanizates were characterized by a high degree of crosslinking and good mechanical properties. Considering the high tensile strength and degree of crosslinking, iron acetylacetonate was the most effective curing agent of the used metal complexes. Compared with the reference sample cured with metal oxides, the CR samples crosslinked using metal acetylacetonates had a higher activity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available