4.4 Article

Rapid detection of explosive vapors by thermal desorption atmospheric pressure photoionization differential mobility analysis tandem mass spectrometry

Journal

RAPID COMMUNICATIONS IN MASS SPECTROMETRY
Volume 33, Issue 18, Pages 1455-1463

Publisher

WILEY
DOI: 10.1002/rcm.8492

Keywords

-

Funding

  1. Marie-Curie Industry-Academia Partnerships and Pathways (IAPP) program [609691]

Ask authors/readers for more resources

Rationale The increased frequency in the number of international terror threats has led to a corresponding increase in demand for fast, sensitive and reliable screening methods suitable for the detection of airborne explosive vapors. We demonstrate herein a workflow suitable for the determination of nitrogen-based explosives at the picogram level in just minutes. Methods A method is described that combines Thermal Desorption (TD) sample introduction with Differential Mobility Analysis (DMA) Tandem Mass Spectrometry (MS/MS), enabling a sensitive and accurate workflow suitable for the rapid detection of trace nitroaromatic, nitroester and nitramine explosive vapors. The methods are bridged using a novel low-flow, field-free Atmospheric Pressure Photoionization (APPI) source, intended specifically for the analysis of gas-phase analytes and airborne particles. Results Limits of detection within or below the picogram range were determined for the analysis of a range of explosives standards including 2,6-DNT, TNT, TATB, Tetryl, RDX, EGDN, PETN, HMX, and NG. Practical application of the TD-APPI-DMA-MS/MS workflow was demonstrated for the detection of real trace explosive vapors produced from the volatilization of solid explosive samples stored within a sealed cardboard box. A single complete analysis was performed in less than 2 min. Conclusions The highly sensitive and accurate detection of a variety of common nitrogen-based explosive vapors has been demonstrated, at levels suitable for practical, high-throughput security screening applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available