4.3 Article

Active steering control for autonomous vehicles based on a driver-in-the-loop platform: A case study of collision avoidance

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/0959651819847005

Keywords

Automotive engineering; control system; intelligent vehicle; collision avoidance

Funding

  1. National Natural Science Foundation of the People's Republic of China [51505354]

Ask authors/readers for more resources

Leveraging the advancements in sensor and mapping technologies, the collision-free autonomous vehicle becomes possible in the future. In this article, a case study of collision avoidance by active steering control is presented and verified by a driver-in-the-loop platform. The proposed control system integrates a risk assessment algorithm and a hierarchical model predictive control approach to ensure a safe driving. First, a fuzzy logic is used to estimate the potential conflict. Besides, a nonlinear model predictive control is introduced in the upper layer of the model predictive controller to generate a collision-free trajectory. Furthermore, the lower layer determines the optimal steering angle based on the linear time-variant model predictive control to follow the replanning path. The performance of the controller has been evaluated in the real-time driver-in-the-loop test. The results show that the autonomous vehicle is able to avoid the collision with the surrounding vehicle that is operated by a real driver, and the performance of collision avoidance is improved by means of the risk assessment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available